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ABSTRACT 

 

This dissertation focuses on combining connected vehicles data, naturalistic driving sensor and 

telematics data, and traditional transportation data to prospect opportunities for engineering 

smart and proactive transportation systems.  

 

The key idea behind the dissertation is to understand (and where possible reduce) “driving 

volatility” in instantaneous driving decisions and increase driving and locational stability. As a 

new measure of micro driving behaviors, the concept of “driving volatility” captures the extent 

of variations in driving, especially hard accelerations/braking, jerky maneuvers, and frequent 

switching between different driving regimes. The key motivation behind analyzing driving 

volatility is to help predict what drivers will do in the short term. Consequently, this dissertation 

develops a “volatility matrix” which takes a systems approach to operationalizing driving 

volatility at different levels, trip-based volatility, location-based volatility, event-based volatility, 

and driver-based volatility. At the trip-level, the dynamics of driving regimes extracted from 

Basic Safety Messages transmitted between connected vehicles are analyzed at a microscopic 

level, and where the interactions between microscopic driving decisions and ecosystem of 

mapped local traffic states in close proximity surrounding the host vehicle are characterized. 

Another new idea relates to extending driving volatility to specific network locations, termed as 

“location-based volatility”. A new methodology is proposed for combining emerging connected 

vehicles data with traditional transportation data (crash, traffic, road geometrics data, etc.) to 

identify roadway locations where traffic crashes are waiting to happen. The idea of event-based 

and driver-based volatility introduces the notion that volatility in longitudinal and lateral 
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directions prior to involvement in safety critical events (crashes/near-crashes) can be a leading 

indicator of proactive safety.  

 

Overall, by studying driving volatility from different lenses, the dissertation contributes to the 

scientific analysis of real-world connected vehicles data, and to generate actionable knowledge 

relevant to the design of smart and intelligent transportation systems. The concept of driving 

volatility matrix provides a systems framework for characterizing the health of three fundamental 

elements of a transportation system: health of driver, environment, and the vehicle. The 

implications of the findings and potential applications to proactive network level screening, 

customized driver assist and control systems, driving performance monitoring are discussed in 

detail.  
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CHAPTER 1 INTRODUCTION 

 

Among other factors, driving behavior is a critical and most unpredictable component of the 

surface transportation system, where it significantly contributes to as much as 90 percent of 

traffic crashes, significant energy use, and emissions. Understanding driver decisions is the key 

to implementing transportation improvement strategies. Also, the potential to improving safety 

and energy use through automation and connectivity of the transportation system is enormous. 

Rapid technological developments, ranging from vehicle-to-vehicle and vehicle-to-infrastructure 

communications, WI-FI, to continuous video and radar surveillance, have enabled collection of 

countless terabytes of spatiotemporal data about vehicle and human movement. Driven by big 

data for science and engineering (S&E), we are at a cusp on a major transformation in 

transportation, where the future at the human-technology frontier needs to be researched.  

 

As such, this dissertation addresses the grand challenge of harnessing big data generated by 

automated and connected vehicles using new statistical techniques. In particular, the focus is to 

assemble and utilize a new comprehensive multidimensional transportation database by 

combining connected and automated vehicles data, naturalistic driving sensor and telematics 

data, and traditional transportation data to prospect opportunities for engineering intelligent, well 

informed, and proactive transportation systems.  

 

The key idea behind the dissertation is be to understand (and where possible reduce) “driving 

volatility” in instantaneous driving decisions and increase driving and locational stability. As a 

rigorous measure of micro driving behaviors, the concept of “driving volatility” captures the 

extent of variations in driving, especially hard accelerations/braking and jerky maneuvers, and 
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frequent switching between different driving regimes. The key motivation behind analyzing 

driving volatility is to help predict what drivers will do in the short term. Consequently, we 

develop a new concept of “driving volatility matrix” which takes a systems approach to 

operationalizing driving volatility at different levels. In particular, through an integrated research 

program, the focus is to conceptualize and model the extent of variations in driving at several 

hierarchies of the real-world traffic ecosystem, i.e., 1) trip-based volatility, 2) event-based 

volatility, 3) location-based volatility, and 4) driver-based volatility, thus termed as driving 

volatility matrix (Figure 1.1).  

 

 

Figure 1.1 New concept of Driving Volatility matrix 
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At the trip-level, the dynamics of driving regimes extracted from emerging Basic Safety 

Messages (BSMs) transmitted between connected vehicles are analyzed at a microscopic level. 

By capturing the interactions between microscopic driving decisions and ecosystem of mapped 

local traffic states in close proximity surrounding the host vehicle, the dissertation characterizes 

and quantifies driving regimes, predicting short term associated volatility of each regime, and 

how long each regime lasts, potentially improving safety, energy use, and emissions. The 

different elements of volatility matrix are illustrated at a very basic level in Figure 1.2 in space-

time dimension. The x-axis is space dimension (e.g., a road facility containing road segments and 

intersections) and y-axis is time dimension. Trip-based volatility relates to the extent of 

variations in microscopic driving decisions at an individual trip level. Referring to the first block 

in Figure 1.2 (indicated by “A”), assume two persons initiate a trip from reference point (home) 

in Figure 1.2 to a grocery store. The hypothetical speed profiles (in space-time dimension) are 

shown in Figure 1.2. If we have microscopic driving behavior and telematics data (high-

resolution speed, acceleration/deceleration, etc.) at our disposal for these two trips, then we can 

develop and apply rigorous data analytic methodologies to quantify the extent of variations in 

microscopic driving decisions, and eventually develop volatility indices for each of the two trips 

(Figure 1.2). At a very basic level, this is referred to as “trip-based volatility” where the volatility 

indices will quantify variations in driving decisions at individual trip level.  

 

At the next level, the idea of “event-based volatility” introduces the notion that volatility in 

longitudinal and lateral directions prior to involvement in safety critical events (crashes/near-

crashes) can be a leading and proactive indicator of safety. For example, referring to the second 

block in Figure 1.2 (indicated by “B”), the two persons now leave the grocery store(s), and start 
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moving to restaurant(s). On their way, one of the persons (indicated by the red trajectory) gets 

into a crash, while the other person (indicated by the green trajectory) gets into a near-crash 

event (Figure 1.2). Assuming that we have observed the two safety-critical events, we can now 

analyze the driving trajectories for the two trips to understand how volatility in microscopic 

driving decisions relate to the safety-critical events (in this case a crash and near-crash), and 

whether such information can be used to predict occurrence of a crash and/or near-crash event 

(Figure 1.2). Note that the concept of “event-based volatility” relates to both crash propensity 

(risk of crash against a normal driving event) and injury outcomes, given a crash. By analyzing a 

plethora of kinematic sensors, video, and radar spatiotemporal naturalistic driving data in this 

regard, the dissertation seeks the relationship between sequence of instantaneous driving 

decisions (and the volatility therein) and drivers’ propensity to get involved in risky outcomes. 

Likewise, with an explicit focus on intentional vs. unintentional volatility, we propose a big data 

analytic and empirical methodology to understand how driving volatility in time to collision may 

influence crash propensity and the injury outcomes, given a crash. 

 

Continuing analysis of high resolution connected vehicles data, another new idea relates to 

extending driving volatility to specific network locations, termed as “location-based volatility” 

(see the third block in Figure 1.2). A new methodology is proposed for combining emerging 

connected vehicles data with traditional transportation data (crash, traffic, road geometrics data, 

etc.) to identify roadway locations where traffic crashes have not yet happened but perhaps are 

waiting to happen. This is an encouraging advance as safety managers can identify locations 

where behaviors of drivers may be more volatile, and can consider proactive countermeasures at 

such locations, e.g., providing alerts and warnings to drivers through connected vehicles roadside 



 

5 

 

equipment (RSE). For illustration, continuing in the space-time dimension, the two persons now 

decide to individually leave the restaurant and go to some other place (see the third block in 

Figure 1.2 indicated by “C”). As they move from the restaurant, they happen to pass through an 

intersection (see Figure 1.2). In this case, assuming that we have microscopic driving 

trajectories, we can quantify volatility in instantaneous driving decisions for each of the two trips 

(or vehicle passings) and average the volatility indices for the two trips to generate “location-

specific” volatility indices, where the location in this case is an intersection. Thus, the idea of 

“location-based volatility” introduces the notion that high volatility and variability in 

microscopic driving decisions at a specific location can be related to the safety performance of 

that location, such as historical crashes. Also, high variability in microscopic driving decisions 

may indicate an issue with the design of an intersection (or roadway segment), and thus can help 

in devising proactive road safety management strategies. There are two important dimensions 

over here. First, as explained above, we can consider the two individual passings at a trip level 

(i.e., first block in Figure 1.2), analyze the microscopic trajectories of the two passings, and link 

it to a specific roadway element (which in this case is an intersection). This way, given the 

availability of connected vehicles data, we can quantify the location-based volatility of each 

individual intersection and/or road segment in a network. Note, however, that the individual 

vehicles passing through the intersections (and trajectories of which are used in calculating 

volatility indices) may not necessarily be involved in historical crashes at that particular location. 

Having said this, the second element of volatility matrix (i.e., event-based volatility) is highly 

relevant and can also be linked with location-based volatility a step further (Figure 1.1 and 

Figure 1.2), as it helps us understand volatility in instantaneous driving decisions in time to 

safety-critical events, such as crashes/near-crashes. For instance, considering the second block in 
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Figure 1.2, we have the microscopic vehicle trajectories for the two events (crash and near-

crash). We can analyze these trajectories at individual levels and link the volatilities with a 

specific roadway element over which these two events happened, which in this case is a road 

segment (see Figure 1.2). This way, the location-based volatility will not be representing the 

driver performance of general population (which may contain crash and non-crash involved 

drivers) but microscopic driving performance of drivers who got involved in safety-critical 

events (such as crashes/near-crashes).  

 

Finally, the last element of volatility matrix is “driver-based volatility” (indicated by “D” in 

Figure 1.2). As the name implies, driver-based volatility is person/driver specific and 

incorporates the volatility in driving decisions associated with each individual person. In this 

regard, the event-based volatility can also be deemed of as driver-based because we have person-

specific individual vehicle passing trajectories before involvement into a safety-critical event. 

However, another equally important element of “driver-based volatility” can be the utilization of 

information on driver’s biometrics and health data. For instance, how the heart rate, head 

movement, blood pressure, and pulse rate of a driver fluctuates as s(he) undertakes a specific trip 

(in a trip-based volatility domain), passing through a particular location or getting into a safety-

critical event.  

 

As is evident, the concept of driving volatility matrix helps us understand the extent of variations 

in microscopic driving decisions at several hierarchies of the traffic ecosystem. Overall, by 

studying driving volatility from different lenses, the dissertation attempts to contribute to the 

scientific analysis of real-world connected vehicles data, and to generate actionable knowledge 
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relevant to the design of smart and intelligent transportation systems. Gaining a better 

understanding of microscopic driving decisions and the variations therein in real-world 

environments is fundamental to the design of personalized and intelligent driver feedback 

systems. The concept of driving volatility matrix provides a systems framework for 

characterizing the health of three fundamental elements of a transportation system: health of 

driver, environment, and the vehicle. By altering volatility in real-world microscopic driving 

decisions, vehicle kinematics, and roadway environment, the outcomes help improve 

transportation safety by proactively predicting crash occurrence and its severity given a crash. 

 

 
 

Figure 1.2 Conceptualization of Driving Volatility Matrix in space-time dimension 

Note: (A  trip-based volatility, B event-based volatility, C location-based volatility, D 

driver-based volatility) 
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The key analyses under this dissertation has led to the following articles: 

1. Khattak, A.J. and B. Wali, Analysis of volatility in driving regimes extracted from basic 

safety messages transmitted between connected vehicles.  

 Peer-review conference paper: Presented at the 96th Transportation Research 

Board Annual Meeting 2017, Washington D.C.  

 Journal article: Published in Transportation Research Part C: Emerging 

Technologies, 2017. 84: p. 48-73. 

2. Kamrani, M., Wali, B., & Khattak, A. J. (2017). Can data generated by connected vehicles 

enhance safety? Proactive approach to intersection safety management.  

 Peer-review conference paper: Presented at the 96th Transportation Research 

Board Annual Meeting 2017, Washington D.C.  

 Journal article: Published in Transportation Research Record: Journal of the 

Transportation Research Board, (2659), 80-90. 

3. Wali, B., A.J. Khattak, and H. Bozdogan, How Is Driving Volatility Related to Intersection 

Safety in a Connected Vehicles Environment?  

 Peer-review conference paper: Presented at the 97th Transportation Research 

Board Annual Meeting 2018, Washington D.C.  

 Journal article: Accepted for Publication in Transportation Research Part C: 

Emerging Technologies. 

4. Wali, B., A.J. Khattak, and T. Karnowski, How Driving Volatility in Time to Collision 

Relates to Crash Severity in a Naturalistic Driving Environment?  

 Peer-review conference paper: Presented at the 97th Transportation Research 

Board Annual Meeting 2018, Washington D.C.  
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 Journal article: Under-review in Analytic Methods in Accident Research.  

5. Wali. B., Khattak, A.J., Karnowski, T. Exploring Microscopic Driving Volatility in 

Naturalistic Driving Environment Prior to Involvement in Safety Critical Events.  

 Journal article: Under second-stage review in Accident Analysis and 

Prevention.  

 

The dissertation is organized in a journal article format since each chapter is a modified version of 

an article or combinations of multiple articles which are either published (or accepted) by an 

academic journal, under-review and/or presented at peer-reviewed international transportation 

conference. Following this chapter, the second chapter answers important research questions on 

categorizing the volatility in typical driving profiles in a connected (instrumented) vehicles 

environment and the average duration of each regime, and identifying the correlates that can be 

associated with drivers’ tendency to stay in a specific regime and/or to switch between different 

regimes in a real-world connected vehicles environment. The third chapter focuses on developing 

an analytic methodology to examine instantaneous driving behaviors by instrumented vehicles at 

specific locations, and its variability. In particular, a new concept of “location-based volatility” is 

developed and questions related to the mapping of driving volatility to historical safety outcomes 

such as crashes at specific locations, are addressed. In a bid to facilitate proactive roadway safety 

management, the fourth chapter extends the big data analytic methodology for characterizing 

location-based volatility and developing a full Bayesian probabilistic modeling scheme to relate 

intersection-specific volatility to historical crash outcomes. Altogether, Chapter 3 and 4 highlights 

the role of emerging large-scale microscopic connected vehicles data to establish proactive 

roadway safety frameworks. Owing to the need of understanding microscopic driving behavior 
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immediately prior to involvement in safety-critical events, the fifth chapter focuses on 

characterizing volatility in instantaneous driving decisions in normal driving events, crash events, 

and near-crash events. An understanding related to the connections between driving volatility and 

crash propensity after controlling for other factors, unobserved heterogeneity, and omitted variable 

bias is developed. Finally, the sixth chapter proposes a big data analytic and empirical 

methodology to examine how driving volatility in time to collision relates to crash-injury severity 

(given a crash) in real-world naturalistic driving environment.  

 

In terms of impact, the proposed activities are significant because they enable new and 

innovative behaviorally-based preemptive early warnings and control assists to drivers based on 

anticipated maneuvers that are potentially unsafe or can lead to traffic flow disturbances or 

greater energy use. It leverages a tremendous opportunity to utilize information becoming 

available from the multifaceted nascent driving monitoring and cyber-physical systems in the 

vehicle-roadway operation realm. The development of intelligent driver feedback and control 

assist systems to improve safety is at the core of the dissertation. The proposed activities are 

transformative because safety gains can be obtained by altering driving volatility matrix in a 

complex driver, vehicle, and/or roadway space. 

 

From a big data science perspective, the novelty and significance of the proposed research rests 

in the assembling and utilization of a new comprehensive multidimensional transportation 

database, containing detailed information on driving behavior in naturalistic and connected 

vehicles environments, vehicle performance, crash and safety event data, road inventory, and the 

built-environment factors. From a methodological perspective, the work rests on development of 
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“big data” driven new and innovative simulation-assisted heterogeneity-based statistical methods 

to extract new knowledge buried in emerging transportation databases. To harness the richness 

provided by big data and engineering intuition/expertise, both frequentist and Bayesian modeling 

paradigms are employed. In particular, emerging time-series and cross-sectional econometric 

methods are employed in this dissertation. To reflect the reality and complexity of real-world 

transportation systems, traditional frequentist approaches, simulation-assisted frequentist 

methods, as well as full Bayesian probabilistic modeling schemes are employed. The empirical 

methods revolve around addressing key methodological issues (mainly heterogeneity in the 

effects of covariates) usually encountered in transportation data analysis, and ignoring which can 

have serious implications on the final inferences being made. We present a conceptual 

framework to understand heterogeneity in transportation data modeling, and important the 

different components of heterogeneous effects.   

 

Figure 1.3 shows the overall outline of the dissertation and highlights in each chapter.  
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Figure 1.3 Dissertation outline 
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CHAPTER 2 ANALYSIS OF VOLATILITY IN DRIVING REGIMES EXTRACTED 

FROM BASIC SAFETY MESSAGES TRANSMITTED BETWEEN CONNECTED 

VEHICLES 
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This chapter presents a modified version of two research articles by Behram Wali and Asad J. 

Khattak. Analysis of volatility in driving regimes extracted from basic safety messages 

transmitted between connected vehicles. Peer-review conference paper: Presented at the 96th 

Transportation Research Board Annual Meeting 2017, Washington D.C. Journal article: 

Published in Transportation Research Part C: Emerging Technologies, 2017. 84: p. 48-73. 

 

ABSTRACT 

 

Driving volatility captures the extent of speed variations when a vehicle is being driven. Extreme 

longitudinal variations signify hard acceleration or braking. Warnings and alerts given to drivers 

can reduce such volatility potentially improving safety, energy use, and emissions. This study 

develops a fundamental understanding of instantaneous driving decisions, needed for hazard 

anticipation and notification systems, and distinguishes normal from anomalous driving. In this 

study, driving task is divided into distinct yet unobserved regimes. The research issue is to 

characterize and quantify these regimes in typical driving cycles and the associated volatility of 

each regime, explore when the regimes change and the key correlates associated with each 

regime. Using Basic Safety Message (BSM) data from the Safety Pilot Model Deployment in 

Ann Arbor, Michigan, two- and three-regime Dynamic Markov switching models are estimated 

for several trips undertaken on various roadway types. While thousands of instrumented vehicles 

with vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication systems are 

being tested, nearly 1.4 million records of BSMs, from 184 trips undertaken by 71 instrumented 

vehicles are analyzed in this study. Then even more detailed analysis of 43 randomly chosen 

trips (N = 714,340 BSM records) that were undertaken on various roadway types is conducted. 

The results indicate that acceleration and deceleration are two distinct regimes, and as compared 
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to acceleration, drivers decelerate at higher rates, and braking is significantly more volatile than 

acceleration. Different correlations of the two regimes with instantaneous driving contexts are 

explored. With a more generic three-regime model specification, the results reveal high-rate 

acceleration, high-rate deceleration, and cruise/constant as the three distinct regimes that 

characterize a typical driving cycle. Moreover, given in a high-rate regime, drivers’ on-average 

tend to decelerate at a higher rate than their rate of acceleration. Importantly, compared to 

cruise/constant regime, drivers’ instantaneous driving decisions are more volatile both in “high-

rate” acceleration as well as “high-rate” deceleration regime. The study contributes to analyzing 

volatility in short-term driving decisions, and how changes in driving regimes can be mapped to 

a combination of local traffic states surrounding the vehicle. 

 

2.1 INTRODUCTION  

 

As a crucial part of technology driven progressive life, automobiles and transportation systems 

have continued to advance since its inception decades ago. The advent of rapid technological 

advancements in recent decades have established the elemental foundation for Cooperative 

Intelligent Transportation Systems (C-ITS), a.k.a. connected and automated vehicles. This said, 

equipping motor vehicles and transportation systems with wireless communication technologies 

in a bid to establish cooperative, well informed, and proactive transportation systems is expected 

to be the next frontier of transportation revolution (Lu et al., 2014, Fagnant and Kockelman, 

2015). Specifically, connected and automated vehicle technologies refer to integrated systems 

that establish bidirectional wireless connectivity among vehicles itself (vehicle-to-vehicle V2V) 
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and the infrastructure (vehicle-to-infrastructure V2I) to capture vehicle position, motion, vehicle 

maneuvering and instantaneous driving contexts1 (Kamrani et al., 2017, US-DOT, 2016).  

 

The generated large-scale integrated empirical data from connected and automated vehicles has 

significant potential in facilitating deeper understanding of instantaneous driving decisions2. 

Variations in driving with respect to the ecosystem of mapped local traffic states in close 

proximity surrounding the host vehicle can be explored. Important in this respect is the concept 

of “driving volatility” that captures the extent of variations in driving, especially hard 

accelerations/braking and jerky maneuvers, and frequent switching between different driving 

regimes3 (Khattak et al., 2015, Wali et al., 2018e, Wali et al., 2018d, Kamrani et al., 2018, 

Kamrani et al., 2017). However, a fundamental understanding of instantaneous driving decisions 

is needed for hazard anticipation and notification systems, and for distinguishing normal from 

anomalous driving. The research issue is to explore different regimes of typical driving behavior 

and how long they last and the key correlates associated with each regime. 

 

As a part of U.S. Department of Transportation’s (USDOT) Real-Time Data Capture and 

Management Program, Safety Pilot Model Deployment (SPMD) in Ann Arbor, Michigan 

                                                 
1 In this study, instantaneous driving contexts refer to the surroundings of host vehicle equipped with V2V and V2I 

technologies. An example can be how much a driver constrained is in terms of different objects surrounding the 

vehicle and the distance of the host vehicle to the surrounding objects.   
2 By instantaneous driving decisions, we mean the instantaneous decisions that driver may undertake to navigate the 

vehicle from one point to another. Such decisions may include decisions in longitudinal direction such as speeding, 

braking, high-rate acceleration, and/or high-rate deceleration, or in lateral direction such as lane change maneuvers. 

However, throughout the paper, we use the term “instantaneous driving decisions” to refer to driving decisions in 

longitudinal direction.  
3 In Economics literature, the key variable(s) that characterizes time-series system(s) occasionally exhibit dramatic 

breaks or abrupt changes in its behavior. The portions of data profile before and after the abrupt change are typically 

referred to “regimes” (Hamilton, 2010). In this paper, we refer to the abrupt changes that may be expected in a 

typical driving cycle as “driving regimes”.  
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features real-world demonstration of connected vehicle safety applications, technologies, and 

systems by hosting approximately 3,000 vehicles instrumented with V2V and V2I 

communication systems (Henclewood, 2014). Altogether, 75 miles of roadway in Ann Arbor, 

Michigan are instrumented with roadside equipment (RSE) that are capable of communicating 

with appropriately instrumented vehicles, and devices via advanced communication and sensor 

technologies such as dedicated short-range communications (DSRC) (Henclewood, 2014). 

Furthermore, data acquisition systems (DAS) are installed in vehicles to facilitate V2V and V2I 

infrastructure communications. The core output from DAS are Basic Safety Messages (BSM) 

that describe (frequency of 10 Hz) vehicle’s instantaneous position (latitude, longitude, and 

elevation), motion (vehicle speed, longitudinal and lateral acceleration), vehicle maneuvering 

(acceleration pedal, brake pedal and cruise control) and instantaneous driving contexts (number 

of objects around host vehicle, distance to the closest object, and relative speed of the closest 

object) (Henclewood, 2014, Khattak and Wali, 2017). The availability of such large-scale high 

resolution data is successfully used for developing a basis for improved real-time alerts, 

warnings, and control assistance applications (Liu and Khattak, 2016b, Kamrani et al., 2017).  

 

By using real-world large-scale data transmitted between connected vehicles and infrastructure, 

the present study creates new knowledge for connected vehicle technologies by explicitly 

investigating time-series instantaneous driving decisions (and the embedded regimes) of 

connected vehicle drivers at a detailed microscopic level, and mapping such decisions to 

instantaneous driving contexts. This analysis is important in sense that driving decisions (e.g., 

acceleration or deceleration decisions) primarily depend on surrounding traffic states (Åberg et 

al., 1997, Haglund and Åberg, 2000, Choudhury, 2007, Choudhury et al., 2010), and a detailed 
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understanding of driving decisions can significantly help us with better anticipating hazardous 

situations and providing warnings and alerts to drivers.  

 

2.2 LITERATURE REVIEW 

 

A careful review of literature reflects the prompt response by government agencies, automotive 

industry and academia to such disruptive yet beneficial connected and autonomous vehicles 

innovation. Recently, the proceedings of 9th University Transportation Centers (UTC) Spotlight 

Conference by the Transportation Research Board (TRB) on connected and automated vehicles 

reflected the perspectives of several stakeholders in order to assemble a goal oriented road map 

to achieve maximum benefits from connected and automated vehicle technologies (Turnbull, 

2016). Specifically, efficient and reliable transportation connectivity solutions are being explored 

for its applicability to address real world safety challenges (Fagnant and Kockelman, 2015, 

Kamrani et al., 2018, Kamrani et al., 2017, Hu et al., 2015, Kim et al., 2007, Liu and Khattak, 

2016b, US-DOT, 2016), mobility problems (Zhu et al., 2009, Hu et al., 2015, Zhu and Ukkusuri, 

2015, Weber, 2015, Koulakezian and Leon-Garcia, 2011, Zeng et al., 2012, Kianfar and Edara, 

2013, Moylan and Skabardonis, 2015, Genders and Razavi, 2015), and environmental challenges 

(Wang et al., 2015, Liu et al., 2015b, Fagnant and Kockelman, 2015, Shin et al., 2015, GM, 

2015, Weber, 2015, Zeng et al., 2012, Liu et al., 2016, Kamalanathsharma and Rakha, 2016). 

Such emerging applications together with connected vehicle infrastructure deployment strategies 

can address potential challenges related to operations and safety which can in turn benefit state 

and local transportation agencies (Hill and Garrett, 2011).  

 

Connected and automated vehicle solutions can potentially help in addressing transportation 
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challenges by primarily targeting the human factor involved in surface transportation. In special 

relevance to transportation safety solutions, several studies have focused on monitoring driving 

behavior to develop cooperative collision warning systems (Abe and Richardson, 2006, Chrysler 

et al., 2015, Doecke et al., 2015, Goodall et al., 2014, Lee et al., 2004, Naseri et al., 2015, Osman 

et al., 2015, Sengupta et al., 2007, Yang et al., 2000). By carefully characterizing driving 

behavior, the afore-mentioned studies contributed by developing effective collision warning 

systems and documented the potential of connected vehicle technologies in addressing major 

transportation safety challenges (Chrysler et al., 2015, Goodall et al., 2014, Osman et al., 2015, 

Doecke et al., 2015). However, the previous studies either utilized driving simulator/algorithm 

developments or localized closed course experiments, which may not cover different driving 

contexts/conditions. Moreover, the key to success of connected vehicle technologies rely on how 

well and effective connectivity of vehicles and/or infrastructure can perform in real life 

situations. Important in this regard are the recent innovations that enable realization of V2V and 

V2I technologies such as DSRC, Wi-Fi, Bluetooth, and cellular networks (Cheng et al., 2007, 

Chou et al., 2009, Sugiura and Dermawan, 2005).   

 

Towards this end, recent studies utilized large scale behavioral data integrated with sensor 

technologies to introduce the concept of “driving volatility”, which can be regarded as a measure 

of driving practice for characterizing instantaneous driving decisions and more specifically 

extreme driving behaviors (Wang et al., 2015, Liu et al., 2015b). The studies by (Wang et al., 

2015) and (Liu et al., 2015b) investigated relationships between driving volatility (for each trip) 

and factors such as driver demographics, trip related factors (purpose, duration) and detailed 

vehicle characteristics such as body type, fuel type, transmission and power train (Wang et al., 
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2015, Liu et al., 2015b). Collectively, the potential of individual level driving volatility in 

developing advanced traveler information systems, driving feedback devices, and alternative fuel 

vehicle purchase frameworks for consumers was documented (Wang et al., 2015, Liu et al., 

2015b). Likewise, (Noble et al., 2014) utilized naturalistic driving data collected through the 

Strategic Highway Research Program 2 for developing a vehicle to infrastructure (V2I) warning 

algorithm. Specifically, in realistic driving behavior context, (Choudhury, 2007) and (Choudhury 

et al., 2010) focused on developing framework for “more realistic” driving lane changing and 

freeway merging behavior models that accounted for “unobserved driving plans” behind the 

observed driving decisions (Choudhury, 2007, Choudhury et al., 2010). Among other innovative 

techniques, Hidden Markov Models were introduced to account for “regime-dependence” in 

driving decisions in congested and freeway merging scenarios, where the current driving plan 

depended on all previous actions (Choudhury, 2007, Choudhury et al., 2010). In addition to 

simulation validations, empirical vehicle trajectory data was used to justify the use of regime-

dependent plans in microscopic traffic simulator environment (Choudhury, 2007). While afore-

mentioned studies provided valuable information about driving actions (Noble et al., 2014) and 

extreme driving events (Wang et al., 2015, Liu et al., 2015b), such extreme events could not be 

mapped to local traffic conditions due to unavailability of data. Similarly, the study by 

(Choudhury, 2007) focused on lane changing and freeway merging driving decisions, and not 

micro-level instantaneous driving decisions and the impact of local traffic conditions on 

instantaneous driving decisions.  

 

SPMD provides an exciting opportunity by using state-of-the-art technologies to generate Basic 

Safety Messages (BSMs) that describe vehicle’s instantaneous position, vehicle maneuvering, 
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and instantaneous driving contexts (Henclewood, 2014). In special relevance to current study, 

study by (Liu and Khattak, 2016b) extracted critical information from raw BSMs that captured 

trip level extreme driving events. An understanding of occurrence of extreme driving events was 

sought by identifying its correlates such as trip attributes, vehicle maneuvering and driving 

context for successful generation of real-time improved alerts, warnings, and control assistance 

systems (Liu and Khattak, 2016b). While the study by (Liu and Khattak, 2016b) utilized large-

scale BSM data sent and received by vehicles and roadside equipment, the study primarily 

focused on conceptualizing trip-level extreme driving events (based on specific thresholds) and 

did not explore the instantaneous driving actions (within the trip) and its associations with 

instantaneous driving contexts that are taken along a specific trip.  

 

2.2.1 Research Objective 

Given the prevalent gap in connected vehicle literature, the present study builds upon the 

existing body of connected vehicle knowledge by focusing on, 1) categorizing time-series based 

driving tasks4 into different regimes using information contained in BSMs; 2) categorizing the 

volatility in each regime and the average duration of each regime, and 3) Identifying the 

correlates that can be associated with drivers’ tendency to stay in a specific regime and/or to 

switch between different regimes. By doing so, a fundamental understanding of instantaneous 

short-term driving decisions is sought (with respect to different roadway types) and how can we 

map time-series instantaneous driving behavior to a combination of local traffic states such as 

instantaneous driving contexts. Given the temporal dependency in instantaneous driving 

                                                 
4 In this paper, the term “driving task” refers to the combination of instantaneous driving decisions that driver may 

take in the longitudinal direction along an entire trip. Depending on the context, we use the term driving task 

interchangeably with the term “driving cycle”. 
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decisions, the current study methodologically contributes by introducing rigorous dynamic 

Markov switching models for conceptualizing micro-level driving behavior into different 

regimes, while mapping correlates to each regime. To the best of our knowledge, for a deeper 

understanding of instantaneous driving decisions, such time-series models together with 

utilization of large-scale real-world connected vehicle data have not been used. 

 

2.3 METHODOLOGY  

 

2.3.1 Conceptual Framework 

A key objective of this study is to explore volatility in driving behavior by applying appropriate 

analytic tools to identify the correlates of instantaneous driving decisions. At a basic level, 

instantaneous driving decisions can be categorized into at least two regimes, and drivers can 

switch between these regimes over time. The two regimes/states are unobserved yet distinct, in 

the sense that in the different regimes, instantaneous driving decision data are generated by 

separate continuous processes (Hamilton, 1989). By separate continuous processes we mean that 

data generation in two regimes along a trip can be developed by different effects of instantaneous 

driving contexts and assuming a time-constant association/effect across a trip irrespective of 

different regimes may overlay the true data generation process5. 

 

Therefore, for simplicity and illustration, we first categorize instantaneous short-term driving 

performance into two regimes. While incorporation of additional regimes is conceptually valid 

                                                 
5 There can be several reasons to anticipate existence of two regimes. Depending on several factors, instantaneous 

driving decisions (magnitude and directions of longitudinal accelerations) can vary significantly across the entire 

trip. Thus, under potentially different conditions (i.e. different instantaneous driving contexts), drivers may respond 

differently to staying in the same regime or switching to a different regime.  
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and theoretically possible, doing so significantly complicates the modeling framework due to 

computational tractability and regime identification issues (discussed later in detail). This is 

evident from the literature where models with more than two regimes are not common and 

different time-dependent regime varying processes (such as traffic crashes, economic, or 

financial data) are usually modelled as a two-regime processes, e.g. (Malyshkina and Mannering, 

2009, Hamilton, 1989, Hamilton, 1994, Hansen, 1992, Kim and Nelson, 1999, Malyshkina et al., 

2009) and the references therein. Nonetheless, not in transportation field though, very few 

studies have also considered three-regime models for modeling different financial and economic 

time-series datasets (Hardy, 2001, Kim et al., 2008). 

 

On the other hand, real-world driving is a complex task and we can anticipate existence of more 

than two regimes, say three regimes in a typical driving cycle. Thus, as pointed out by the 

reviewers too, it is plausible to start with a more generic model specification that may capture 

common driving regimes, and thus can help in extracting important information related to 

instantaneous driving decisions embedded in real-world connected vehicle data6.  Having said 

this, we thoroughly investigate real-world instantaneous driving decisions in connected vehicle 

environment based on two and three regime dynamic Markov switching models.  

 

Next, we investigate associations of instantaneous driving decisions with critical correlates 

(available in the data) related to instantaneous driving context such as the number of objects 

around the host vehicle and distance to the closest object. By doing so, a fundamental 

                                                 
6 We sincerely thank the two reviewers for suggesting investigation of more than two-regimes in a typical driving 

cycle. Doing so came at a cost of losing some data (discussed later in detail), nonetheless, exploration of three 

regime instantaneous driving behavior models helped us in extracting meaningful information from the data which 

was otherwise not possible from the two-regime specification.  
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understanding of instantaneous short-term driving decisions is sought (with respect to different 

roadway types) and how can we map time-series instantaneous driving behavior, especially 

driving volatility to a combination of local traffic states such as instantaneous driving contexts. 

This is important in the sense that instantaneous driving contexts, at least at a basic level, can be 

represented by surrounding vehicles around the host vehicle which may constrain movement 

and/or motivate driver to get out of congested situation. Assuming (for now) that the driver’s 

tendency is to get out of congested situations, how the driver actually maneuvers the car is an 

important question which is likely to have important safety (among others) implications (Liu and 

Khattak, 2016b). Is there frequent switching from acceleration to braking and vice versa? These 

behaviors are perhaps more dangerous, compared with other behaviors such as constant speed 

(Liu and Khattak, 2016b).  

 

As instantaneous driving behavior (across an entire trip) is a time-varying process, we use a 

Markov regime switching dynamic regression framework that assumes Markov switching (over 

time) between two and three (unobserved) regimes in a typical driving cycle. Note that the 

regime switching can be based on change in measures of central tendency (averages) and/or 

dispersion (variance). Having said this, conceptualizing the driving task into two (or three) 

different regimes can potentially account for existence of several unobserved factors that may be 

associated with driving performance envelope (Hamilton, 1989). Markov switching models thus 

can treat driving behaviors in an intuitive manner. As a matter of fact, two-regime Markov 

switching models are used successfully in solving problems related to traffic safety, for 

exhaustive applications of Markov switching regressions in safety area, interested readers are 

referred to (Malyshkina and Mannering, 2009, Malyshkina et al., 2009, Xiong et al., 2014a).  
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Figure 2.1 presents the hypothesized behavior during a general trip where “1” refers to regime 1; 

“2” refers to regime 2 and P(1-1) indicates the probability that a driver in regime 1 at current 

time will continue in regime 1 during the next time period. Figure 1 also illustrates the time-

series framework as a Markov regime switching dynamic regression. Assume that a driver is 

currently (at time instant t = -1 seconds) in regime 1; the driver at next instant of time (t = 0 

second) can either decide to remain in regime 1 or to switch to regime 2, given the effects of 

correlates, i.e. instantaneous driving contexts. If the driver is in regime 2 (or vice versa) at t = 0 

second, the challenge is to predict driver action at next instant of time (indicated by t = 1 second) 

given the effects of associated covariates.  

 

Following similar concept, Figure 2.2 presents a three-regime typical driving cycle based on 

Markov Switching dynamic regression framework where “1” refers to regime 1; “2” refers to 

regime 2; and “3” refers to regime 3. If a driver is currently (at time instant t = -1 seconds) in 

regime 1; the driver at next instant of time (t = 0 second) can either decide to remain in regime 1 

or to switch to regime 2 or regime 3, given the effects of correlates, i.e. instantaneous driving 

contexts. If the driver is in regime 2 (or vice versa) at t = 0 second, the challenge is to predict 

driver action (to stay in regime 2, or to switch to regime 1 or 3) at next instant of time (indicated 

by t = 1 second) given the effects of associated covariates.  
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Figure 2.1 Behavior conceptualization of instantaneous driving decisions in a “two-regime” 

Markov switching dynamic regression framework (Note: O= Any other unobserved regime). 

 

 

 
Figure 2.2 Behavior conceptualization of instantaneous driving decisions in a “three-regime” 

Markov switching dynamic regression framework. 

 

 

 



 

27 

 

With the empirical framework of two and three regimes Markov Switching dynamic regression 

models, the research questions are: 

 What are these regimes in typical driving cycle? 

 How much is the volatility each regime? 

 When do the regimes change or how long they last? 

 Are driver decisions consistent across different trips undertaken by different drivers? 

Precisely, while allowing for differential effects of key correlates across two and three regimes, 

are the correlations constant across the regimes?  

 

Finally, the proposed methodology has the potential to probabilistically predict a driving regime 

at a specific instant of time while allowing for the effects of instantaneous driving contexts. This 

is important in the sense that a change from one regime to another is not perfectly deterministic 

due to several unobserved factors. Thus, a time-series model should account for the probabilistic 

nature of the process. The proposed conceptual framework is focused on answering the afore-

mentioned critical questions. A detailed description of formulating the given problem in a 

mathematical framework is presented in later section. 

 

2.3.2 Markov-switching dynamic (abrupt-change) regression models 

2.3.2.1 Two-Regime Dynamic Markov-switching regression models 

 

Markov switching models were recently introduced in traffic crash modeling for addressing 

different important issues related to traffic safety, for exhaustive applications of two-regime 

Markov switching regressions in safety area, interested readers are referred to (Malyshkina and 

Mannering, 2009, Malyshkina et al., 2009, Xiong et al., 2014a). As instantaneous driving 
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behavior (across an entire trip) is a time-varying process, we use a Markov regime switching 

dynamic regression (MSDR) framework that assumes Markov switching (over time) between 

two (unobserved) regimes7, in this case regime 1 and regime 2 for two-regime model. Consider 

the evolution of driving behavior "𝑦𝑡", where t = 1, 2, …..,T (i.e. the entire duration of the trip) 

that is particularly characterized by two regimes/states: 

Regime 1: 𝑦𝑡 = 𝜇1 + ∅𝑦𝑡−1 + 휀𝑡 Equation 2.1 

Regime 2: 𝑦𝑡 = 𝜇2 + ∅𝑦𝑡−1 + 휀𝑡 Equation 2.2 

 

 

Where: 𝜇1 and 𝜇2 are the intercept terms in regime 1 and regime 2 respectively; ∅ is the 

Autoregressive parameter; and 휀𝑡 is the white noise with variance 𝜎2. The two regime model 

abrupt shifts in the intercept term (Hamilton, 1994). At times, if the timing of the switching is 

known to the analyst, the above models (Equation 2.1 and 2.2) can be expressed as: 

𝑦𝑡 = 𝑠𝑡𝜇1 + (1 − 𝑠𝑡)𝜇2 + ∅𝑦𝑡−1 + 휀𝑡 Equation 2.3 

 

Where: 𝑠𝑡 is 1 if the process (driving behavior cycle) is in regime 1 and 2 if in regime 2. 

Empirically, the model in Equation 2.3 can be conceptualized as regression with dummy 

variables and can be estimated with ordinary least squares regression (Hamilton, 1994). 

However, in the case under consideration, we never know in which regime the process is at 

current time, or indirectly 𝑠𝑡 is unobserved8. This said, Markov-switching regression framework 

specifies that the unobserved  𝑠𝑡 follows a Markov chain. 

 

                                                 
7 The three-regime MSDR framework is explained later in this section.  

8 It is important to note that the dependent variable (instantaneous driving decisions in longitudinal direction) is 

observed, but the regimes (𝑠𝑡) are not observed. That is, we as analysts do not know a-priori what specifically the 

two-regimes are that characterize a typical driving cycle. We explain this in detail in the results section.  
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Note that the transition of driving cycle between two regimes can either be abrupt-change 

(dynamic Markov switching specification) or gradual adjustment (Autoregressive Markov 

Switching specification) after the process changes regime. However, in our case, due to the high 

resolution (frequency of 10 Hz) of instantaneous driving behavior data (dependent variable), we 

allow the driving cycle for a specific trip to switch between two regimes abruptly and not with 

gradual adjustment, thus called Markov Switching Dynamic Regression (MSDR) (Hamilton, 

1994). This alternatively suggests the autoregressive term “∅" in equation 2.1 and 2.2 equals 

zero. Thus, in the simplest case, we can express the framework as regime-dependent abrupt-

change intercept term for k regimes (in our case k = 2) as: 

𝑦𝑡 = 𝜇𝑠𝑡
+ 휀𝑡 Equation 2.4 

 

Where: 𝜇𝑠𝑡
= 𝜇1 when 𝑠𝑡 =1 (i.e. regime 1) and 𝜇𝑠𝑡

= 𝜇2 when 𝑠𝑡 =2 (i.e. regime 2) and 휀𝑡 is the 

white noise with variance 𝜎2. In the simplest case, with switching in variance term9 "𝜎2" and no 

explanatory variables, six parameters 𝜇1, 𝜇2, 𝜎1
2,  𝜎2

2, 𝑝1→2, 𝑝2→1 are estimated. Furthermore, the 

conditional density of driving cycle 𝑦𝑡 is characterized by a first order two- state Markov process 

as: 

𝑓(𝑦𝑡|𝑠𝑡 = 𝑖, 𝑦𝑡−1; 𝜽) Equation 2.5 

 

 

Where 𝜽 is a vector of parameters i.e. in simplest case with only intercept terms and regime-

specific variances, 𝜽 = [𝜇1, 𝜇2, 𝜎1
2,  𝜎2

2, 𝑝1→2, 𝑝2→1 ]. For two regimes, there are two 

                                                 
9 In addition to switching of intercept term, variances can be regime-dependent (separate variance for two regimes) 

or regime independent (single variance for the entire process). The decision to allow switching in variance terms can 

be based on empirical and/or theoretical evidence. In addition to empirical justification from data, we posit that the 

two unobserved regimes are two distinct components of driving behavior and the variance in the evolution of the 

two regimes can be significantly different from each other. Thus, constraining the variance term to be regime-

independent can potentially hide (as we will show) the true information embedded in data generation process. 
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conditional densities, and thus estimation of parameter vector 𝜽 is performed by updating the 

conditional likelihood using nonlinear filter (Hamilton, 1994), as opposed to linear updates by 

(Harvey, 1990). With a vector of set of explanatory variables “B” along with switching 

intercepts, the general specification of  MSDR can be written as (Hamilton, 1989):  

𝑦𝑡 = 𝜇𝑠𝑡
+ 𝑋𝑡 ∝ +𝑍𝑡𝛽𝑠𝑡

+ 휀𝑡 Equation 2.6 

 

Where: 𝑦𝑡 is the dependent variable, 𝜇𝑠𝑡
 is the regime-dependent intercept term, 𝑋𝑡 is a vector of 

exogenous variables with regime-independent coefficients ∝, 𝑍𝑡 is a vector of exogenous 

variables with regime-dependent coefficients 𝛽𝑠𝑡
, and 휀𝑡 is independent and identically 

distributed (i.i.d.) normal error with mean 0 and regime-dependent variance 𝜎𝑆𝑡
2. In Equation 

2.6, as the two regime variables 𝑠𝑡 are unobservable, the vector of estimable parameters for 

Equation 2.6 shall include 𝜽 = [𝜇1, 𝜇2, 𝜎1
2,  𝜎2

2, 𝑝1→2, 𝑝2→1 ] in addition to parameter estimates 

for regime-dependent and regime-independent explanatory variables10.  

 

2.3.2.2 Three-Regime Dynamic Markov-switching regression models: 

 

The modeling framework can now be extended to a three-regime specification. Consider the 

evolution of driving behavior "𝑦𝑡", where t = 1, 2, …..,T (i.e. the entire duration of the trip) that 

is particularly characterized by three unobserved regimes/states: 

𝑦𝑡 = 𝜏𝑠𝑡
+ 휀𝑡 Equation 2.7 

 

Where: 

                                                 
10 In our case, we posit that the effects of explanatory variables (i.e. number of objects around host vehicle and 

distance to closest object) can be different with respect to two regimes. Thus, 𝑋𝑡 (vector of regime independent 

exogeneous variables) is zero. As a result, the vector of estimable parameters for Equation 2.6 is 𝜽 = [𝜇1, 𝜇2, 𝜎1
2,  

𝜎2
2, 𝑝1→2, 𝑝2→1 , 𝛽𝑠𝑡=1, 𝛽𝑠𝑡=2], where 𝛽𝑠𝑡=1, 𝛽𝑠𝑡=2 are regime dependent vectors of estimable parameters for 

exogenous variables.  
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𝜏𝑠𝑡
= {

𝜏1 𝑖𝑓 𝑠𝑡  = 1 (regime 1)

𝜏2 𝑖𝑓 𝑠𝑡  = 2 (regime 2)
𝜏3 𝑖𝑓 𝑠𝑡  = 3 (regime 3)

 

Equation 2.8 

 

And, 휀𝑡 is the normally distributed white noise with mean 0 and variance 𝜎𝑠𝑡
2 , 𝑠𝑡 = (Åberg et al., 

1997) is an unobservable state variable governed by a first-order Markov chain. In the simplest 

case, with switching in variance term "𝜎2" and no explanatory variables, the parameter vector 

𝜽 = [𝜇1, 𝜇2, 𝜇3, 𝜎1
2,  𝜎2

2, 𝜎3
2, 𝑝1→1, 𝑝1→2, 𝑝2→1, 𝑝2→2, 𝑝3→1, 𝑝3→2], i.e. twelve parameters are 

estimated. Similar to the two-regime models, the three conditional densities (for three regimes) 

associated with estimation of parameter vector 𝜽 is performed by updating the conditional 

likelihood using nonlinear filter (Hamilton, 1994).  

 

With a vector of set of exogenous explanatory variables “W” along with regime-dependent 

intercepts and variances, the general specification of  a three-regime MSDR can be written as 

(Hamilton, 1989):  

𝑦𝑡 = 𝜏𝑠𝑡
+ 𝑋𝑡𝛿 + 𝑍𝑡𝛾𝑠𝑡

+ 휀𝑡 Equation 2.9 

 

Where: 𝑦𝑡 is the dependent variable, 𝜏𝑠𝑡
 is the regime-dependent intercept term, 𝑋𝑡 is a vector of 

exogenous variables with regime-independent coefficients 𝛿, 𝑍𝑡 is a vector of exogenous 

variables with regime-dependent coefficients 𝛾𝑠𝑡
, and 휀𝑡 is independent and identically 

distributed (i.i.d.) normal error with mean 0 and regime-dependent variance 𝜎𝑆𝑡
2. Given the 
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inclusion of regime-dependent exogeneous explanatory variables, the estimable parameter vector 

𝜽 is now expanded in Equation 2.911. 

 

2.3.3. Markov chains 

A discrete time Markov chain (DTMC) is assumed during switching mechanism of driving cycle 

between two regimes i.e. the probability distribution of 𝑠𝑡+1 depends only on current regime 𝑠𝑡 

and not on the previous evolution of driving behavior12 i.e. 𝑠𝑡−1, 𝑠𝑡−2, … .. (Tauchen, 1986). This 

is commonly referred to a two-state Markov chain and is fairly a standard in applications of 

Markov Switching models (Xiong et al., 2014a, Hamilton, 2010) (Malyshkina and Mannering, 

2009, Hamilton, 1994). Higher order Markov chains where the realization of the future state may 

depend on current state and previous history brings in high complications to the model 

estimation process (Kim et al., 2008), and are thus not common in Markov switching 

applications13. Also, the first-order Markov chain seems a natural and intuitive starting point and, 

as mentioned in (Hamilton, 2010), is clearly preferable to acting as if the shift from regime 1 to 2 

                                                 
11 The parameter vector 𝜽 for the three-regime MSDR framework has at least 15 parameters to be estimated, i.e. 𝜽 =

[𝜇1, 𝜇2, 𝜇3, 𝛾𝑠𝑡=1, 𝛾𝑠𝑡=2, 𝛾𝑠𝑡=3, 𝜎1
2,  𝜎2

2, 𝜎3
2, 𝑝1→1, 𝑝1→2, 𝑝2→1, 𝑝2→2, 𝑝3→1, 𝑝3→2], where 𝛾𝑠𝑡=1, 𝛾𝑠𝑡=2, 𝛾𝑠𝑡=3are regime 

dependent vectors of estimable parameters for exogenous variables in the three-regime MSDR model.  
12 Another option can be to specify the models in continuous time. However, the advantage of DTMCs is that they 

have a mathematically easy formal description. A concern, however, can be that modeling continuous process is 

hard using a time-discrete paradigm. In other words, a uniform step must be artificially introduced, which will 

always result in errors and abstraction. However, in our case, we are not artificially introducing a time-step. Despite 

that driving cycle is a continuous process, we observe the driving decisions at discrete time intervals (t = 1, 2, 3, and 

so on.). Due to the very high data resolution of SPMD connected vehicle data, it is unlikely that drivers will make 

instantaneous driving decisions and perform frequent regime switching within one second. Also, the basic 

formulation of Markov property shows that observing a continuous-time Markov chain at regular time intervals 

gives a discrete-time Markov chain.  
13 An alternative and indirect way of extending the first-order Markov chain property can be to formulate a model 

specification where the evolution of response outcome may depend on the value of switching mean at its current 

state and lagged value, and this in turn will lead to four conditional densities where the new state variable is a four-

state Markov chain. This specification is mathematically equivalent to Markov Switching Autoregressive framework 

as shown in Equations 2.1 and 2.2 and is typically used to model low frequency data (Hamilton, 1994, Kim, 1994). 

Keeping in view the extant literature, Markov switching dynamic regressions are used in the current study given the 

high resolution of instantaneous driving data (Stata, 2016, Hamilton, 2010).  
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(or vice versa) was a perfectly deterministic event. Permanence, if any, of the shift between the 

regimes would be represented by 𝑝2→2 (in two regime case) equal 1, and any intra-regime 

probability of less than one (as we will see later) would indicate lack of permanence which the 

Markov formulation accommodates. Furthermore, if the regime change in instantaneous driving 

decisions reflects a change in instantaneous driving contexts, the prudent hypothesis would seem 

to be to allow the possibility for the regime to change back again when instantaneous driving 

context changes, and this suggests that  𝑝2→2 < 1 is a more natural formulation for thinking 

about the regime changes than the deterministic 𝑝2→2 = 0 (Hamilton, 2010, Kim et al., 2008). 

Having said this, assuming 𝑠𝑡 to be an irreducible and aperiodic Markov chain originating from 

its ergodic distribution 𝜋 = (𝜋1, … … . . , 𝜋𝑘), the probability that 𝑠𝑡 belongs to, 𝑗 ∈ (1,2) (where 

1, 2 refers to regime 1 and 2) for two regime model and  𝑗 ∈ (1,2,3) (where 1, 2, and 3 refers to 

regime 1, 2, and 3) in three regime model depends on the most recent realization of driving 

behavior, 𝑠𝑡−1, and thus can be formulated as (Hamilton, 1994): 

Pr(𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑖) =  𝑝𝑖𝑗 Equation 2.10 

 

Thus, all possible transitions from one regime to another, in a two-regime model, can be 

collected in 2 × 2 transition matrix while governing the evolution of Markov chain as: 

𝑷 = [
𝑝1→1 𝑝1→2

𝑝2→1 𝑝2→2
] Equation 2.11 

 

 

While, the transition probabilities of switching from one regime to another in a three-regime 

model can be collected in a 3 × 3 transition probability matrix as: 

𝑷 = [

𝑝1→1 𝑝1→2 𝑝1→3

𝑝2→1 𝑝2→2 𝑝2→3

𝑝3→1 𝑝3→2 𝑝3→3

] 
Equation 2.12 
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2.3.4 Likelihood function with latent states/regimes 

Using the Markov chain property, the conditional density of 𝑦𝑡 can be formulated using Equation 

2.5 for two or three regime models. However, in order to obtain marginal density of 𝑦𝑡, we 

weigh the conditional densities (one for each regime) by their respective probabilities, as 

explained in (Hamilton, 1994, Goldfeld and Quandt, 1973, Frühwirth-Schnatter, 2006): 

𝑓(𝑦𝑡|𝜽) = ∑ 𝑓(𝑦𝑡|

𝑘

𝑖=1

𝑠𝑡 = 𝑖, 𝑦𝑡−1; 𝜽)Pr(𝑠𝑡 = 𝑖, 𝜽) 

Equation 2.13 

 

 

Over here, let us introduce a 𝑘 × 1 vector of conditional densities as: 

∀𝑡= [

𝑓(𝑦𝑡|𝑠𝑡 = 1; 𝑦𝑡−1; 𝜽
𝑓(𝑦𝑡|𝑠𝑡 = 2; 𝑦𝑡−1; 𝜽

..
𝑓(𝑦𝑡|𝑠𝑡 = 𝑘; 𝑦𝑡−1; 𝜽

] 

Equation 2.14 

 

Where: k is number of regimes respectively. To construct the final likelihood function, the 

probability that 𝑠𝑡 takes on specific value (either 1 or 2 for a two-regime model or 1, 2, or 3 for a 

three-regime model) using the data through time “t” and model parameters 𝜽 should be 

estimated. While utilizing the data until time “t”, let Pr (𝑠𝑡 = 𝑖; 𝑦𝑡; 𝜽) denote the conditional 

probability of observing 𝑠𝑡 = 1, then the resulting likelihood is: 

Pr(𝑠𝑡 = 𝑖; 𝑦𝑡; 𝜽) =
𝑓(𝑦𝑡|𝑠𝑡 = 𝑖, 𝑦𝑡−1; 𝜽)𝑃𝑟(𝑠𝑡 = 𝑖; 𝑦𝑡−1; 𝜽)

𝑓(𝑦𝑡| 𝑦𝑡−1; 𝜽)
 

Equation 2.15 

 

The likelihood can then be estimated through iterating Equation 2.16 and 2.17 as14: 

ℵ𝑡|𝑡 =
ℵ𝑡|𝑡 ∗ ∀𝑡

1′(ℵ𝑡|𝑡−1 ∗ ∀𝑡)
 

Equation 2.16 

ℵ𝑡+1|𝑡 = 𝑃ℵ𝑡|𝑡 Equation 2.17 

 

                                                 
14 To achieve final likelihood function, we transform conditional probabilities for two regimes i.e. Pr(𝑠𝑡 = 𝑖; 𝑦𝑡; 𝜽) 

and Pr(𝑠𝑡−1 = 𝑖; 𝑦𝑡; 𝜽) to 𝑘 × 1 vector as ℵ𝑡|𝑡 and ℵ𝑡|𝑡−1 respectively.  
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Where 1 is 𝑘 × 1 vector of constants i.e. 1s. The reduced likelihood representation is thus 

obtained as15: 

L(𝜃) = ∑ 𝑙𝑜𝑔𝑓(𝑦𝑡|𝑦𝑡−1;𝑇
𝑡=1 𝜃) 

 

Where: 

𝑓(𝑦𝑡|𝑦𝑡−1; 𝜃) =  1′(ℵ𝑡|𝑡−1 ∗ ∀𝑡) 

Equation 2.18 

 

2.3.5 Predictions/regime prediction 

To be able to predict the unconditional probability of a driving cycle in a specific regime at time 

“t”, we use conditional transition probabilities and the Markov structure of the model. 

Specifically, the log-likelihood function has a recursive structure (Frühwirth-Schnatter, 2006) 

that initiates from the unconditional state probabilities ℵ1|0. Thus, the unconditional probabilities 

are estimated as: 

𝜋 = (𝑨′𝑨)−1𝑨′𝑒𝑘+1 Equation 2.19 

 

 

Where A is (𝑘 + 1) × 𝑘 matrix formulated as: 

𝐴 = [
𝑰𝒌 − 𝑃

1′ ] Equation 2.20 

 

 

And 𝐼𝑘 denotes 𝑘 × 𝑘 identity matrix, and 𝑒𝑘 denotes kth column of 𝑰𝒌 respectively. 

 

 

                                                 
15 Characterization of maximum likelihood estimates has been performed through implementation of Expectation 

Maximization (EM) algorithm (Dempster et al., 1977). Due to the nonlinear equation structure for estimating 

parameter vector 𝜽, it is practically not possible to solve them analytically, and as such, iterative algorithm is used to 

finding the maximum likelihood estimates. Each iteration of this algorithm consists of two simple steps: An E-step, 

in which a conditional expectation is calculated over a pre-defined density surface, and an M-step, where the 

conditional expectation is maximized. For a detailed discussion about EM algorithm in context of aperiodic ergodic 

Markov chains, interested readers are referred to (Hamilton, 1994). 
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2.4 DATA DESCRIPTION – DATA ACQUISITION SYSTEMS 

 

The data were extracted from the Data Acquisition System (DAS), which was part of Safety Pilot 

Model Deployment (SPMD) in Ann Arbor, Michigan. The key objectives of SPMD include 

evaluation of how drivers adapted to the utilization of connected vehicle technology, providing 

opportunity to explore real-world effectiveness of connected vehicle safety applications in multi-

modal driving conditions (Henclewood, 2014). This study focuses on using the SPMD large-

scale connected vehicle sanitized mobility data to understand instantaneous driver decisions in a 

broader ecosystem of instrumented vehicles and infrastructure on different roadway functional 

classifications.  

 

As part of DAS, BSMs contain instantaneous (frequency of 10 Hz) information packets 

describing host vehicle’s motion and location information, including vehicle performance (speed 

and acceleration), vehicle operation (brake and accelerator pedal application), and instantaneous 

driving contexts (number of objects around host vehicle and distance to the closest object) 

respectively (Henclewood, 2014). This information is stored in BSMs that are instantaneously 

sent and received by instrumented vehicles and roadside equipment (Henclewood, 2014). Table 

2.1 summarizes the detailed description of key data variables whereas detailed description of all 

other data sources is available in SPMD Data Handbook (Henclewood, 2014). One-day sample 

data (04/11/2013) has been used for this study which contains approximately 1.4 million records 

(1,399,084) of basic safety messages, from 184 trips undertaken by 71 instrumented vehicles. 

Specifically, the sum of all trip durations is approximately 38.8 hours, whereas the average 

duration per trip is 12 minutes respectively. From roadway type stand-point, the overall trips are 

undertaken on combination of freeways, state routes, and local routes respectively. 
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For this study, a probability based random-sampling procedure is conducted to randomly select 

43 trips (out of 184 trips) for further analyses16. In the probability based simple random-

sampling, random number generator (RNG) was used to generate unique indexes (ranging 

between 0 and 1) for each of the 184 trips and equal probability was assigned to each of the trip 

(i.e. probability of selecting each trip was same across the data matrix). Next, a sample of 43 

trips is randomly extracted from the original data matrix (containing 184 trips) without 

replacement.  

 

Table 2.1 Variable Descriptions from DAS SPMD, Ann Arbor, Michigan  

Source: SPMD Data Handbook (Henclewood, 2014). 

 

                                                 
16 A total of 43 randomly selected trips were categorized and modeled at the microscopic level in this study. 

Analyzing the entire database of 184 trips was not done since it would be very labor intensive (in terms of 

categorizing) and computationally burdensome (in terms of modeling). Also, it is important to note that the 43 

randomly chosen trips account for 52% of the total one-day BSM sample (714,340 BSM packets out of 1,399,084 

packets).  

Variable Description 

Position 

Altitude 
A GPS-based estimate of height above sea level (height above the 

reference ellipsoid that approximates mean sea level) 

Latitude Current degree of latitude at which the vehicle is located 

Longitude Current degree of longitude at which the vehicle is located 

Motion 

Speed (host vehicle) 
Current vehicle speed, as determined from the vehicle’s 

transmission 

Longitudinal 

Acceleration 

Longitudinal acceleration measured by an Inertial Measurement 

Unit (IMU) 

Lateral Acceleration Lateral acceleration measured by an IMU 

Vehicle 

Maneuvering 

Accelerator Pedal 
Reflects the amount the accelerator pedal is displaced with respect 

to its neutral position 

Brake Pedal Indicates whether the brake light is on or off 

Cruise Control Indicates whether cruise control is active/engaged 

Turn Signal Provides information regarding the state of the vehicle turn signals 

Driving 

Context 

Number of objects Number of identified objects, as determined by the Mobileye sensor 

Distance to the 

closest object 

Position of the closest object, relative to a reference point on the 

host vehicle, according to the Mobileye sensor 

 



 

38 

 

To facilitate more meaningful analysis, the entire vehicle trajectories for 43 randomly selected 

trips were visualized in Google Earth to identify the roadway functional classification on which 

the trips were undertaken.  As such, significant efforts went into classifying the trips with respect 

to roadway type. For the sampled 43 trips, four trips are undertaken on freeway and state routes, 

2 trips on US state routes, 14 trips on freeways, 18 trips on local roads, and 5 trips on state and 

local routes. Altogether, the 43 trips are undertaken by 34 vehicles whereas few vehicles 

undertook two or more than two trips.  

 

The connected vehicle data used in this study are reliable and was error-checked. We linked the 

microscopic trip data (collected at a frequency of 10 Hz) with a trip-summary file that contains 

trip-level information, from each instrumented vehicle, and for each trip taken during the study 

period. The columns in the two files matched well in terms of trip start and end times, vehicle ID 

and trip ID, distance traveled, average speed, and trip duration. Such concordance increases our 

confidence in the data.  

 

As stated earlier, the current study focuses on exploring the relationship between driving regimes 

and most critical correlates i.e. instantaneous driving contexts. This said, descriptive statistics are 

presented in Table 2 only for instantaneous driving decisions (response variable) and 

instantaneous driving contexts (explanatory variables) respectively. In Table 2.2, the explanatory 

variables are as follow: 

 Objects indicator: 1 if number of objects around host vehicle ≥ 3, 0 otherwise. While we 

tried different possible categorizations and also used this variable as discrete in the model 

specifications, the cutoff point of 3 targets provided the most comparable and empirically 
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better (based on AIC) results (Wali et al., 2017a).  This categorization also helps in 

comparing the effects of nearby targets on driving regimes across different trips 

undertaken on different roadway types.  

 Range: indicates the distance of closest object to host vehicle in feet.  

 

2.4.1 Data Aggregation 

The SPMD connected vehicle data is collected at a frequency of 10 Hz i.e. 10 BSM packets per 

second are transmitted between connected vehicles and the infrastructure. This provides the 

opportunity to conduct microscopic empirical assessment of real-world driving data and 

vehicular movements that vary substantially over time (Liu and Khattak, 2016b). However, as 

the present study focuses on instantaneous driving decisions, it may be difficult to understand the 

transition between different regimes, especially within the time frame of one-tenth of a second17. 

Thus, we aggregate the data at relatively lower frequency before conducting detailed 

econometric analysis of instantaneous driving decisions. However, if the data are aggregated at 

very lower frequency, it may result in losing short-term extreme or volatile driving decisions 

(Liu et al., 2015a), which is also a fundamental focus of the present study. According to the 

study by (Liu et al., 2015a), the feasibility of detecting micro-driving decisions for 1 Hz 

sampling data (one BSM per second) is 98.54% where 1.46% of the information about micro-

decisions can be lost (Liu et al., 2015a). Likewise, if the sampling rate is reduced to 0.5 Hz (one 

BSM per two seconds), 0.2 Hz (one BSM per five seconds), and 0.1 Hz (one BSM per ten 

seconds), the information loss can be 4.835%, 17.87%, and 35.86% respectively (Liu et al., 

2015a). Given these results and the scope of the present study, we have aggregated the data at 1 

                                                 
17 We thank the anonymous reviewer for bringing up this conceptual concern to our attention.  
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Hz (one BSM per second) where averages of the values for each specific variable (identified in 

Table 2.1) within one-second are taken18.  This resulted in a total of 71,434 seconds (i.e. 714,340 

BSM packets divided by 10) of real-world connected vehicle driving data.  

 

2.5 RESULTS 

 

2.5.1 Descriptive Statistics 

The descriptive statistics presented in Table 2.2 summarizes each sampled trip by providing 

mean, standard deviation, minimum and maximum. The distributions of different driving states 

for each trip e.g. acceleration/deceleration seem reasonable. As compared to mean 

acceleration/deceleration values, the standard deviation is relatively large for almost all the trips, 

indicating larger variation in acceleration/deceleration cycles for a given trip. Trips undertaken 

on freeways (N=12) are relatively longer with a mean and maximum trip duration of 48.6 and 

218.4 minutes respectively (Table 2). The trips undertaken on freeways are also observed to be 

high-speed trips (as compared to those on freeways and state routes) with mean speed of 78.8 

mph and maximum mean speed of 81.19 mph respectively. 

                                                 
18 Note that we also conducted the entire analyses using original data resolution of 10 Hz. However, doing so did not 

change our overall inferences regarding the presence and identification of regimes, and its correlations with 

explanatory variables in typical driving cycle. Results of the analyses conducted at 10 Hz data are available from 

authors upon request.  
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Table 2.2 Descriptive Statistics of Selected BSM Variables 

 

Trip 

No. Acc-Dec (Mean/SD/Min/Max) 

Number of Targets 

(Mean/SD/Min/Max) 

Range 

(Mean/SD/Min/Max) 

Average 

Speed Duration 

Freeways & 

State Routes 

1 (-0.0043/0.3623/-3.758/2.241) 0.21/0.40/0/1 0.970/0.540/0.093/1.5 89.79 17.476 

2 (0.008/0.286/-1.5907/2.5759) 0.56/0.49/0/1 0.66/0.47/0.03/1.78 68.25 26.214 

3 (-0.0112/0.5322/-3.2444/2.3138) 0.34/0.47/0/1 0.29/0.28/0.02/1.5 72.48 32.768 

4 (0.0031/0.2269/-1.5928/1.3693) 0.46/0.49/0/1 0.99/0.51/0.04/2.24 74.82 34.953 

US State 

Routes 

1 (-0.0383/0.3348/-1.6694/2.3972) 0.09/0.28/0/1 0.73/0.40/0.03/1.77 53.84 4.369 

2 (0.0054/0.6422/-3.60/2.4138) 0.27/0.44/0/1 0.26/0.32/0.02/1.5 49.06 26.214 

Freeways 

1 (-0.0065/0.4368/-2.921/2.057) 0.72/0.44/0/1 0.35/0.21/0.04/1.59 80.48 19.661 

2 (-0.0008/0.6055/-2.6779/2.9166) 0.26/0.44/0/1 0.60/0.51/0.02/1.54 54.61 52.429 

3 (-0.0202/0.6539/-4.37/2.9) 0.46/0.49/0/1 0.40/0.45/0.01/1.77 72.02 17.476 

4 (-0.0214/0.5873/-1.9694/2.4472) 0.36/0.48/0/1 0.19/0.15/0.02/1.5 48.65 13.107 

5 (0.0102/0.3439/-1.9032/1.7773) 0.37/0.48/0/1 0.99/0.53/0.03/2.17 68.06 26.214 

6 (0.0090/0.4562/-1.8164/2.074) 0.47/0.49/0/1 0.80/0.44/0.025/1.78 66.88 19.661 

7 (0.0018/0.2914/-2.3003/1.8706) 0.30/0.46/0/1 1.05/0.46/0.11/2.16 81.19 21.845 

8 (0.0166/0.5987/-2.1916/2.6777) 0.44/0.49/0/1 0.23/0.22/0.02/1.5 49.2 23.815 

9 (-0.0004/0.1863/-1.6645/1.1566) 0.18/0.39/0/1 0.97/0.52/0.02/2.48 82.1 218.453 

10 (-0.0002/0.1861/-1.8511/1.6970) 0.18/0.39/0/1 1.01/0.47/0.03/2.51 76.2 196.608 

11 (0.0022/0.4081/-1.9227/2.1484) 0.47/0.49/0/1 0.65/0.47/0.03/1.76 72.3 26.214 

12 (0.0017/0.3481/-2.2309/1.7925) 0.30/0.46/0/1 0.91/0.53/0.06/ 72.9 21.845 

Notes: Acceleration/Deceleration are recorded in units of 𝑚 𝑠2⁄ ; range in hundreds of feet; average speed in 𝑚𝑖𝑙𝑒𝑠
ℎ𝑟⁄ ; and 

duration in minutes.  
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Table 2.2 Descriptive Statistics of Selected BSM Variables (Continued) 

 

Trip 

No. Acc-Dec (Mean/SD/Min/Max) 

Number of Targets 

(Mean/SD/Min/Max) 

Range 

(Mean/SD/Min/Max) 

Average 

Speed  Duration 

Local Routes 

1 (0.0064/0.5953/-2.1722/2.0777) 0.16/0.37/0/1 0.71/0.58/0.03/1.68 32.23 13.107 

2 (0.0014/0.900/-3.233/2.4674) 0.01/0.11/0/1 0.28/0.39/0.01/1.5 49.69 6.554 

3 (-0.0028/0.6322/-2.8555/2.8277) 0.18/0.38/0/1 0.43/0.34/0.02/1.5 28.19 19.661 

4 (0.0023/0.6046/-2.100/3.2305) 0.12/0.33/0/1 0.88/0.55/0.02/1.50 33.04 8.738 

5 (0.0241/0.6756/-2.6432/2.0203) 0.18/0.39/0/1 0.27/0.33/0.02/1.5 23.73 10.923 

6 (0.0075/0.4854/-1.911/2.7583) 0.09/0.29/0/1 0.80/0.52/0.04/1.77 48.41 13.107 

7 (-0.0003/0.612/-2.411/2.7886) 0.17/0.38/0/1 0.44/0.45/0.02/1.5 39.66 15.292 

8 (-0.0252/0.5989/-2.3958/1.6883) 0.24/0.42/0/1 0.50/0.53/0.03/1.5 33.88 4.369 

9 (0.0067/0.7795/-3.905/3.480) 0.05/0.27/0/1 0.86/0.57/0.02/1.5 40.51 34.953 

10 (-0.0061/0.5762/-3.1/2.491) 0.007/0.083/0/1 0.93/0.55/0.02/1.5 46 10.923 

11 (0.0105/0.4905/-2.0377/2.0833) 0.06/0.0818/0/1 0.66/0.46/0.03/1.77 57.8 15.292 

12 (0.0173/0.5790/-1.7230/2.6367) 0.40/0.49/0/1 0.53/0.46/0.02/1.5 17.5 6.554 

13 (-0.0062/0.7026/-2.7647/2.5694) 0.25/0.43/0/1 0.51/0.50/0.02/1.52 33.1 17.476 

14 (0.0231/0.485/-1.8722/1.3777) 0.08/0.27/0/1 0.26/0.13/0.04/1.51 67.4 10.923 

15 (0.001/0.6294/-2.4522/2.4110) 0.04/0.19/0/1 0.62/0.51/0.03/2.07 18.7 13.107 

State & local 

Routes 

1 (0.0012/0.6672/-2.7908/5.4036) 0.36/0.48/0/1 0.23/0.36/0.01/1.5 31.14 43.691 

2 (0.0128/0.5850/-2.6302/3.3680) 0.24/0.42/0/1 0.46/0.45/0.008/1.63 39.85 24.030 

3 (-0.0067/0.5509/-2.5195/2.4934) 0.32/0.47/0/1 0.48/0.41/0.01/1.62 43.97 21.845 

4 (-0.0045/0.5982/-3.0861/3.1) 0.02/0.16/0/1 1.25/0.43/0.03/1.78 76.74 32.768 

5 (0.0070/0.2776/-1.3715/1.7664) 0.07/0.0266/0/1 1.32/0.35/0.14/1.53 73 24.030 

Notes:  

1. Sample size = 713, 896 BSM records (N = 38 trips) 

2. Descriptive statistics for 38 trips are presented as 5 trips were excluded from the analysis due to relatively shorter duration (i.e. 

less than 2 minutes) and no objects around the host vehicle were recorded by Mobile Eye sensor for such trips. 

3. Acceleration/Deceleration are recorded in units of 𝑚 𝑠2⁄ ; range in hundreds of feet; average speed in 𝑚 ℎ𝑟⁄ ; and duration in 

minutes. 
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Next, the average trip duration for trips on freeway and state routes (N=4) is 27.8 minutes with 

maximum trip duration of 34.9 minutes (Table 2.2). Intuitively, trips on freeways and state routes 

are also high-speed trips with mean speed of 76.33 mph and maximum mean speed of 89.79 mph 

respectively (Table 2.2). In terms of duration and speed, trips on local roads (N=15) are observed 

to be both shorter and slower with average trip duration of 13.39 minutes and average speed of 

37.98 mph respectively (Table 2.2). The trips on state and local routes follow similar distribution 

with mean duration of 29.27 minutes and average speed of 52.94 mph (as compared to average 

speed of 37.98 mph on local routes) (Table 2.2). Note that the detailed trip information and the 

geo-coded trajectories provided in SPMD (Henclewood, 2014) are not always from start to end 

of a trip, owing to issues related to privately identifiable data. 

 

To see if the data is characterized by noise, appropriate visualizations are developed. To clarify 

the relationship between speeds and acceleration, distributions of acceleration are visualized 

against speed in the top panel of Figure 2.3. High speeds (>50-55 mph) are associated with 

smaller acceleration magnitudes as well as smaller dispersion (or volatility) in 

acceleration/deceleration values. The top right panel in Figure 2.3 shows the density scatter plot 

where the bandwidth of acceleration/deceleration values at high speeds is tighter than the 

bandwidth of acceleration/deceleration values at low speeds. This seems reasonable as vehicle 

engines should do more work to maintain the same acceleration at higher speeds to overcome 

increasing air resistance. Therefore, the ability to accelerate a vehicle decreases naturally at 

higher speeds (Liu and Khattak, 2016b, Wang et al., 2015). 
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To gain further insights regarding data quality, we analyze the distribution of longitudinal vs. 

lateral accelerations, and the relationship resembles a lozenge shaped distribution which implies 

that lateral and longitudinal accelerations (or decelerations) do not have large magnitudes 

simultaneously. Also, the instantaneous driving decisions in longitudinal and lateral directions 

seem to be inversely correlated with a Pearson correlation coefficient of -0.22, which is in 

agreement with previous literature (Wang et al., 2015). Such concordance again increases our 

confidence in the data.  

 

 
Figure 2.3 Distributions of speed, longitudinal, and lateral accelerations 
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2.5.2 Modeling Results 

Data are used from 38 trips for further analyses19, the total duration of which is 19.83 hours i.e. it 

is approximately half of the trip durations for overall 184 trips. As discussed in section 2.4.1, the 

data is aggregated at a frequency of 1 Hz (i.e., one BSM per second). Thus, in the present study, 

the regimes (𝑠𝑡) are same for all 38 trips i.e., regime 1, and regime 2 in two-regime models, and 

regime 1, regime 2, and regime 3 in three-regime Markov switching models, and that the regimes 

(𝑠𝑡) can change every one second. For ease of discussion, we first systematically present the 

results of two-regime dynamic Markov-switching models in section 2.6.1 followed by presenting 

results for the three-regime dynamic Markov-switching models in section 2.6.2.  

 

 

2.5.2.1 Two-Regime Dynamic Markov Switching Models 

 

We estimated 76 Markov switching regression models to analyze each trip separately, i.e. 38 

constant-only instantaneous driving decision models for each trip and 38 instantaneous driving 

decision models with all explanatory variables. The analyses are conducted as: 

 

 First, to observe the relationships and correlations, for each trip, we estimated simple 

Ordinary Least Square (OLS) regression models for modeling instantaneous driving 

decisions (response variable) as a function of number of objects around host vehicle and 

distance to closest object. Both explanatory variables were statistically significantly 

associated with modeling instantaneous driving decisions (response variable) at 95% 

confidence level.  

                                                 
19 As mentioned earlier, detailed analysis is conducted for 38 trips (out of 43 trips) as 5 trips were excluded from the 

analysis due to relatively shorter duration (i.e. less than 2 minutes) and no objects around the host vehicle were 

recorded by Mobile Eye sensor for such trips. 
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 Second, to capture the evolution of driving behavior followed by time series, constant-

only two-regime Markov Switching Dynamic Regression (MSDR) models were 

estimated for each trip. In the constant-only models, the intercept terms and variances20 

could switch between regimes. In other words, Eq. (4) was estimated. Constant-only 

models were developed to observe two regimes, regime-dependent means and the 

associated variances or volatilities. Table 2.3 illustrates the results of two-regime 

constant-only models for six trips, whereas Figure 2.4 illustrates the summary for 

constant-only models for all 38 trips. In Table 2.3, the regime-dependent means and 

variances are reported. Also, mean transition probabilities21 (1→1, 1→2, 2→1, 2→2) are 

reported for the selected six trips, where 1→1 can be interpreted as estimated transitional 

probability of staying in regime 1 in the next period given the driver is observed in 

regime 1 in current period. Finally, mean durations of each regime are reported in Table 

2.3 and Figure 2.4.  

 For ease of discussion, we divide 38 trips (after estimating separate models) into two 

categories: 1) Category 1: trips on freeways, state routes, and freeway and state routes, 

and 2) Category 2: trips on local and state routes, and local routes. 

 Finally, we estimate full two-regime Markov switching dynamic regression models with 

full specification as of Equation 2.6 i.e. 𝜽 = [𝜇1, 𝜇2, 𝜎1
2,  𝜎2

2, 𝑝1−2, 𝑝2−1 , 𝛽𝑠𝑡=1, 𝛽𝑠𝑡=2]. 

In this model, all estimable parameters (𝜇, 𝜎, 𝛽) can switch between the two regimes of a 

specific driving cycle. Regarding regime-dependent variance term for the full models, we 

                                                 
20 Intuitively, it would be unreasonable to assume that the variance in acceleration be equal to variance in 

deceleration. Thus, as a first step, two-regime constant-only models were developed with switching intercept-term 

only. Next, the variances were also allowed to switch between states. Finally, the model with switching intercept and 

variance term was selected as final model if variance terms were observed to be different in two regimes and 

statistically significant at 95% confidence level (Hamilton, 1994).   
21 Note that P(1→1) = 1 - P(1→2) and P(2→1) = 1 - P(2→2).    
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estimated models both with regime-dependent and regime-independent variance terms, 

and the model that resulted in best fit was selected (discussed later) (Hamilton, 1994). 

Table 2.4 illustrates the results of full models (including regime-dependent explanatory 

variables) for the same trips for which constant-only models are presented in Table 2.3. 

Furthermore, Table 2.5 and 2.6 summarizes the results of all specified two-regime 

models, for category 1 and category 2 trips, respectively. For all model parameters as 

identified in Equation 2.6, to summarize the distribution of estimated parameters for all 

trips, Table 2.5 and 2.6 present the mean, minimum, and maximum parameter estimates 

(βavg, βmin, βmax), standard deviation (Std.dev), and several percentile values (25thP, 

50thP, 75thP, and 90thP), for category 1 and category 2 trips, respectively.  

 

Table 2.3 Two-Regime Constant-Only Markov Switching Regression Models (six selected trips) 

Constant-only Models 

Freeway Freeway 

Freeway 

& State 

Route 

Freeway 

& State 

Route 

Local 

Route 

Local 

Route 

Acceleration-

Regime 1 

β 0.149 0.104 1.1297 0.147 0.2568 0.141 

z-score 16 5.23 26.01 12.61 6.01 7.93 

Deceleration-

Regime 2 

β -1.019 -1.104 -0.0163 -0.739 -1.412 -1.194 

z-score -24.86 5.23 -2.69 -17.04 -11.19 -15.5 

Regime 1 - 

Variance 

Parameter 

β  0.4422 0.467 0.11635 0.377 0.6646 0.453 

Std. Error 
0.0063 0.014 0.0021 0.007 0.028 0.012 

Regime 2 - 

Variance 

Parameter 

β 0.5811 0.341 0.1163 0.5323 0.6891 0.443 

Std. Error 
0.0225 0.035 0.0021 0.0222 0.0715 0.05 

Transition 

prob: 1→2 

β 0.017 0.0144 0.0926 0.0284 0.0215 0.062 

Std. Error 0.0027 0.005 0.0506 0.0048 0.009 0.004 

Transition 

prob: 2→2 

β 0.8834 0.873 0.9979 0.8682 0.8763 0.866 

Std. Error 0.0179 0.04 0.0011 0.0213 0.0473 0.037 

Expected 

Duration: 

Regime 1 

β 58.58 69.12 10.7922 35.096 46.505 61.38 

95% Conf. 

Interval 43.0,79.9 34.6,139.0 4.0,32.8 

25.1,49.

0 

20.0,109.

5 34.4,110.1 

Expected 

Duration: 

Regime 2 

β 8.582 7.891 71.31 7.589 8.08 7.464 

95% Conf. 

Interval 6.3,11.6 4.3,15.2 

59.1,81.

1 5.5,10.4 4.0,17.7 4.4,13.2 
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Figure 2.4 Summary of two-regime constant-only Markov switching regression models (all 38 

trips). 
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Table 2.4 Two-Regime Full Markov Switching Regression Models (for six selected trips) 

Full Models 

Freeway Freeway 

Freeway 

& State 

Route 

Freeway 

& State 

Route 

Local 

Route 

Local 

Route 

Acceleration-

Regime 1 

Constant 

(std. error) 

0.0666 

(0.0159) 

0.077 

(0.031) 

1.47 

(0.082) 

0.161 

(0.019) 

0.273 

(0.051) 

0.1172 

(0.025) 

Objects 

indicator 

(std. error) 

0.146 

(0.020) 

-0.083 

(0.035) 

-0.328 

(0.086) 

0.030 

(0.015) 

-0.320 

(0.322) 

0.229 

(0.056) 

Range (std. 

error) 

0.032 

(0.017) 

0.279 

(0.131) 

-0.349 

(0.106) 

-0.138 

(0.037) 

-0.084 

(0.158) 

0.041 

(0.021) 

Deceleration-

Regime 2 

Constant 

(std. error) 

-1.494 

(0.073) 

-1.002 

(0.094) 

-0.051 

(0.0124) 

-0.806 

(0.057) 

-1.603 

(0.180) 

-1.183 

(0.096) 

Objects 

indicator 

(std. error) 

0.513 

(0.080) 

-0.063 

(0.102) 

0.0154 

(0.006) 

0.090 

(0.051) 

1.3707 

(0.614) 

0.559 

(0.102) 

Range (std. 

error) 

0.162 

(0.073) 

-0.546 

(0.592) 

0.041 

(0.012) 

-0.258 

(0.099) 

0.227 

(0.097) 

-0.169 

(0.129) 

Regime 1 - 

Variance 

Parameter 

β 0.2265 0.466 0.229 0.402 0.665 0.401 

Std. Error 0.003 0.014 0.004 0.007 0.072 0.011 

Regime 2 - 

Variance 

Parameter 

β 0.2265 0.338 0.1145 0.201 0.655 0.456 

Std. Error 0.003 0.035 0.002 0.0035 0.072 0.033 

Transition prob: 

1→2 

β 0.015 0.013 0.098 0.026 0.0206 0.017 

Std. Error 0.002 0.005 0.053 0.004 0.008 0.005 

Transition prob: 

2→2 

β 0.846 0.878 0.997 0.845 0.8755 0.899 

Std. Error 0.022 0.04 0.001 0.024 0.048 0.027 
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Table 2.5 Summary of specified two-regime models for all trips taken on freeways, state routes, 

and freeway and state routes (Category 1 trips) 

 Variable βavg Std.dev βmin βmax 25P 50P 75P 90P 

Acceleration 

- Regime 1 

Constant 0.366 0.457 0.013 1.475 0.055 0.129 0.518 1.240 

Objects 

indicator -0.003 0.164 -0.328 0.460 -0.078 0.013 0.062 0.146 

Range 0.065 0.218 -0.330 0.608 -0.026 0.017 0.216 0.279 

Duration-

Acc 49.659 38.157 10.180 150.713 19.100 40.060 72.494 105.312 

Sigma-Acc 0.203 0.119 0.074 0.466 0.121 0.150 0.248 0.461 

Deceleration 

- Regime 2 

Constant -0.568 0.486 -1.494 -0.052 -0.994 -0.451 -0.109 -0.071 

Objects 

indicator 0.076 0.237 -0.272 0.548 -0.059 0.034 0.090 0.538 

Range 0.095 0.287 -0.546 0.665 0.025 0.064 0.162 0.658 

Duration-

Dec 80.900 123.787 5.040 462.590 7.119 11.768 152.030 245.900 

Sigma-Dec 0.271 0.244 0.074 1.109 0.123 0.178 0.347 0.445 

Transition 

Probabilities 

1→1 0.918 0.065 0.802 0.998 0.859 0.915 0.993 0.995 

2→1 0.039 0.029 0.007 0.098 0.013 0.028 0.056 0.085 

Notes: Objects indicator: 1 if ≥3 number of objects, 0 otherwise; Range: Distance to closest 

object in hundreds of feet; “Sigma” refers to variance of each regime i.e. 𝜎1
2 for regime-

acceleration and 𝜎2
2 for regime-deceleration. 25P, 50P, 75P, 90P refers to 25th, 50th, 75th, and 

90th percentile values of estimated parameters for all trips. βavg , βmin , βmax refers to mean, 

minimum, and maximum parameter estimate for all trips. Std. dev refers to standard deviation of 

mean parameter estimates (βavg).  
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Table 2.6 Summary of specified two-regime models for all trips taken on local and state, and 

local routes (Category 2 trips) 

 Variable βavg Std.dev βmin βmax 25P 50P 75P 90P 

Acceleration 

- Regime 1 

Constant 

0.344 0.441 

-

0.006 1.692 0.113 0.174 0.333 1.092 

Objects 

indicator 0.114 0.621 

-

1.519 2.122 -0.033 0.058 0.267 0.419 

Range 

0.031 0.312 

-

0.814 0.701 -0.100 0.017 0.102 0.460 

Duration-

Acc 43.443 33.034 5.558 146.36 19.76 38.10 54.40 80.490 

Sigma-

Acc 0.337 0.147 0.112 0.615 0.216 0.333 0.429 0.551 

Deceleration 

- Regime 2 

Constant 

-0.776 0.509 

-

1.604 -0.102 -1.189 -0.802 -0.228 -0.138 

Objects 

indicator 0.019 0.675 

-

2.167 1.371 -0.133 0.117 0.322 0.575 

Range 

0.109 0.465 

-

1.077 1.028 -0.154 0.102 0.328 0.697 

Duration-

Dec 29.255 42.197 5.472 147.32 8.061 10.34 23.31 110.60 

Sigma-

Dec 0.424 0.248 0.112 1.018 0.226 0.401 0.538 0.812 

Transition 

Probabilities 

1→1 0.912 0.053 0.817 0.993 0.876 0.903 0.955 0.991 

2→1 0.043 0.043 0.007 0.180 0.018 0.026 0.055 0.097 

Notes: Objects indicator: 1 if ≥3 number of objects, 0 otherwise; Range: Distance to closest 

object in hundreds of feet; “Sigma” refers to variance of each regime i.e. 𝜎1
2 for regime-

acceleration and 𝜎2
2 for regime-deceleration. 25P, 50P, 75P, 90P refers to 25th, 50th, 75th, and 

90th percentile values of estimated parameters for all trips. βavg , βmin , βmax refers to mean, 

minimum, and maximum parameter estimate for all trips. Std. dev refers to standard deviation of 

mean parameter estimates (βavg).  

 

2.5.2.2 Three-Regime Dynamic Markov Switching Models 

 

As discussed in detail in section 2.3.1., real-world driving is a complex task and we can 

anticipate existence of more than two regimes, say three regimes in a typical driving cycle. Thus, 

it is plausible to also investigate a more generic model specification that may capture common 

driving regimes, and thus can help in extracting important information related to instantaneous 

driving decisions embedded in real-world connected vehicle data. Having said this, we estimated 

76 three-regime Markov switching regression models to analyze each trip separately, i.e., 38 
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constant-only three-regime instantaneous driving decision models for each trip and 38 three-

regime instantaneous driving decision models with all explanatory variables i.e., full 

specification. The analyses are conducted as: 

 

Like the two-regime Markov switching models, for ease of discussion in three-regime 

specification, we divide the trips (after estimating separate models) into two categories: 1) 

Category 1: trips on freeways, state routes, and freeway and state routes, and 2) Category 2: trips 

on local and state routes, and local routes. 

 

To capture the evolution of driving behavior followed by time series, constant-only three-regime 

Markov Switching Dynamic Regression (MSDR) models are estimated for each trip. 

Specifically, the regimes are not observed i.e., we do not a-priori what are the three assumed 

regimes in a typical driving cycle. Like the two-regime constant only models, the intercept terms 

and variances can switch between the three regimes. In other words, Equations 2.7 and 2.8 are 

estimated. Constant-only models are developed to observe the three regimes, regime-dependent 

means and the associated variances or volatilities associated with each regime. Table 2.7 

summarizes the results of three-regime constant-only models for all trips, whereas Figure 2.5 

graphically illustrates the mean intercepts and the associated volatilities associated with each of 

the three regimes for all the trips. For all model parameters in three-regime constant only models, 

to summarize the distribution of estimated parameters for all trips, Table 2.7 also presents the 

mean, minimum, and maximum parameter estimates (βavg, βmin, βmax), standard deviation 
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Table 2.7 Summary of three-regime constant only models for all category 1 and category 2 trips.  

 Regimes Parameters βavg Std.dev βmin βmax 25P 50P 75P 90P 

Freeway, 

State Routes, 

Freeway & 

State Routes 

(N = 14).a  

High Rate Acc - 

Regime 1 

Intercept 0.542 0.336 0.065 0.965 0.113 0.639 0.829 0.953 

Sigma 

(Volatility) 0.501 0.316 0.049 1.245 0.336 0.454 0.672 1.081 

Duration 10.006 3.503 5.903 16.589 6.889 8.833 12.913 15.772 

High Rate Dec - 

Regime 2 

Intercept -0.666 0.414 -1.576 -0.129 -0.936 -0.646 -0.264 -0.138 

Sigma 

(Volatility) 0.302 0.218 0.049 0.690 0.107 0.282 0.475 0.635 

Duration 7.651 3.241 3.749 15.489 4.987 7.143 8.866 14.020 

Cruise - Regime 3 

Intercept 0.012 0.034 -0.059 0.059 -0.014 0.022 0.035 0.057 

Sigma 

(Volatility) 0.143 0.080 0.049 0.260 0.066 0.131 0.227 0.254 

Duration 33.991 35.978 9.422 138.165 15.717 18.400 41.081 110.32 

Local, State 

and Local 

Routes (N = 

14).a  

High Rate Acc - 

Regime 1 

Intercept 0.792 0.186 0.507 1.237 0.679 0.785 0.867 1.108 

Sigma 

(Volatility) 0.544 0.092 0.433 0.794 0.480 0.526 0.593 0.713 

Duration 9.566 2.575 5.946 13.139 7.464 8.940 12.495 12.908 

High Rate Dec - 

Regime 2 

Intercept -0.824 0.216 -1.310 -0.586 -0.945 -0.807 -0.624 -0.587 

Sigma 

(Volatility) 0.580 0.096 0.398 0.790 0.532 0.555 0.650 0.749 

Duration 9.050 2.081 5.364 12.895 7.147 9.594 10.588 12.132 

Cruise - Regime 3 

Intercept 0.014 0.013 -0.019 0.038 0.007 0.012 0.021 0.033 

Sigma 

(Volatility) 0.137 0.061 0.056 0.312 0.106 0.127 0.160 0.245 

Duration 21.280 14.680 6.472 57.200 11.603 14.377 34.665 47.258 

Notes: (a) Four category 1 and six category 2 trips are dropped due to failure in convergence of three-regime constant only models. 

See footnote 23 for details 

 



 

54 

 

 
Figure 2.5 Summary of three-regime constant-only Markov switching regression models (all 38 

trips). 

 

(Std.dev), and several percentile values (25thP, 50thP, 75thP, and 90thP), for category 1 and 

category 2 trips, respectively22,23. Finally, for all the trips, we estimate full three-regime Markov 

switching dynamic regression models with full specification as of Equation 2.9 i.e.,  𝜽 =

[𝜇1, 𝜇2, 𝜇3, 𝛾𝑠𝑡=1, 𝛾𝑠𝑡=2, 𝛾𝑠𝑡=3, 𝜎1
2,  𝜎2

2, 𝜎3
2, 𝑝1−1, 𝑝1−2, 𝑝2−1, 𝑝2−2, 𝑝3−1, 𝑝3−2]. In this model, all 

estimable parameters (𝜇, 𝜎, 𝛽) can switch between the three regimes of a specific driving cycle. 

Regarding regime-dependent variance term for the full models, we estimated models both with 

                                                 
22 The default algorithm we used for maximizing the likelihood functions for all trips in two-regime as well as in 

three-regime models is modified or quasi Newton-Raphson (NR) algorithm. The three-regime constant only models 

readily converged for 28 trips, however, for four category 1 trips and six category 2 trips, the three-regime constant 

only models did not converge. For these trips, we also tried other maximization algorithms such as Berndt-Hall-

Hall-Hausman (BHHH), Davidon, Fletcher-Powell (DFP), and Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

algorithms, however, the models did not converge. The failure of the quasi NR optimization (and other optimization 

methods) imply that the parameters of the specified three-regime models are not identified by the data, and this is 

common when attempting to fit a model with too many regimes  (Stata, 2016).  
23 As such, 10 trips are dropped from the estimation sample which corresponds to 20,669 seconds (or 0.206 million 

BSMs) of driving data i.e., 29% of the data in total sample is dropped for the three-regime constant only models.   
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regime-dependent and regime-independent variance terms, and the model that resulted in best fit 

was selected.  

 

Table 2.8 and 2.9 summarizes the results of full three-regime models (including regime-

dependent explanatory variables) for category 1 and category 2 trips, respectively. Also,  

Table 2.8 and 2.9 present the mean, minimum, and maximum parameter estimates (βavg, βmin, 

βmax), standard deviation (Std.dev), and several percentile values (25thP, 50thP, 75thP, and 

90thP), for three-regime category 1 and category 2 trips, respectively24. Also, regime durations 

and mean transition probabilities25 are reported (as in Equation 2.12) for all the trips, where for 

example, 3→1 can be interpreted as estimated transitional probability of staying in regime 3 in 

the next period given the driver is observed in regime 1 in current period.  

                                                 
24 For fully-specified three-regime models (i.e., including regime dependent explanatory variables), the models did 

not converge for 14 trips (five category 1 trips and nine category 2 trips). As such, 14 trips are dropped for the 

estimation sample which corresponds to 14,830 seconds of driving data i.e., 21% of the data in total sample.  
25 Note that P (1→3) = (1 - P(1→1) – P(1→2)), P(2→3) = (1 - P(2→1) – P(2→2)), and P(3→3) = (1 - P(3→1) – 

P(3→2)).  
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Table 2.8 Summary of specified three-regime models for all trips taken on freeways, state routes, and freeway and state routes 

(Category 1 trips) 

 Regimes Parameters βavg Std.dev βmin βmax 25P 50P 75P 90P 

Freeway, 

State Routes, 

Freeway & 

State Routes 

(N = 14). * 

High Rate Acc - 

Regime 1 

Intercept 0.693 0.393 0.040 1.239 0.383 0.788 0.943 1.200 

# of objects -0.277 0.659 -2.359 0.184 -0.242 -0.075 0.011 0.155 

Range -0.104 0.278 -0.549 0.423 -0.334 -0.126 0.027 0.382 

Sigma 

(Volatility) 0.330 0.202 0.061 0.676 0.109 0.345 0.512 0.638 

Duration 10.643 4.041 5.930 18.784 7.563 9.972 13.496 17.837 

High Rate Dec - 

Regime 2 

Intercept -0.811 0.569 -2.326 -0.147 -1.128 -0.686 -0.429 -0.162 

# of objects 0.164 0.450 -0.272 1.561 -0.018 0.055 0.216 1.050 

Range 0.206 0.534 -0.767 1.575 -0.080 0.188 0.430 1.160 

Sigma 

(Volatility) 0.324 0.178 0.061 0.578 0.124 0.387 0.450 0.560 

Duration 8.142 1.950 4.983 11.877 7.108 7.806 9.168 11.667 

Cruise - Regime 3 

Intercept -0.011 0.043 -0.070 0.078 -0.049 -0.001 0.019 0.057 

# of objects -0.001 0.050 -0.144 0.054 -0.010 0.002 0.030 0.053 

Range 0.084 0.202 -0.116 0.694 -0.006 0.018 0.089 0.517 

Sigma 

(Volatility) 0.231 0.351 0.049 1.322 0.068 0.134 0.235 0.997 

Duration 37.969 36.668 8.152 128.455 16.128 17.742 59.744 113.23 

Transition 

Probabilities 

1→1 0.029 0.039 0.000 0.126 0.002 0.019 0.028 0.114 

1→2 0.212 0.310 0.030 0.939 0.063 0.100 0.134 0.913 

2→1 0.810 0.220 0.084 0.915 0.842 0.871 0.890 0.913 

2→2 0.096 0.040 0.002 0.144 0.070 0.106 0.129 0.139 

3→1 0.090 0.250 0.003 0.920 0.010 0.025 0.034 0.567 

3→2 0.823 0.335 0.046 0.992 0.938 0.944 0.983 0.991 

Note: (*) Five category 1 trips are dropped due to failure in convergence of three-regime fully specified models. See footnote 24 

for details.  
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Table 2.9 Summary of specified three-regime models for all trips taken on local and state, and local routes (Category 2 trips) 

 Regimes Parameters βavg Std.dev βmin βmax 25P 50P 75P 90P 

Local, State 

and Local 

Routes (N = 

14). * 

High Rate Acc - 

Regime 1 

Intercept 0.764 0.156 0.499 0.948 0.612 0.852 0.887 0.936 

# of objects -0.259 0.690 -1.859 0.251 -0.226 0.005 0.150 0.249 

Range -0.121 0.265 -0.825 0.085 -0.188 -0.025 0.056 0.084 

Sigma 

(Volatility) 0.503 0.125 0.280 0.792 0.459 0.486 0.552 0.754 

Duration 9.756 2.874 5.588 13.237 7.111 8.985 12.654 13.186 

High Rate Dec - 

Regime 2 

Intercept -0.771 0.273 -1.039 -0.166 -1.018 -0.789 -0.650 -0.223 

# of objects 0.058 0.210 -0.221 0.403 -0.167 0.078 0.204 0.379 

Range 0.013 0.450 -1.031 0.808 -0.183 0.059 0.194 0.721 

Sigma 

(Volatility) 0.552 0.098 0.393 0.787 0.497 0.538 0.561 0.758 

Duration 9.345 1.721 6.876 11.947 7.842 9.964 10.727 11.863 

Cruise - Regime 3 

Intercept 0.020 0.052 -0.006 0.176 -0.001 0.003 0.018 0.145 

# of objects -0.079 0.212 -0.697 0.072 -0.092 -0.005 0.010 0.063 

Range -0.022 0.107 -0.335 0.067 -0.014 0.005 0.019 0.061 

Sigma 

(Volatility) 0.111 0.034 0.054 0.158 0.095 0.111 0.142 0.155 

Duration 17.606 10.541 7.322 37.475 10.235 14.665 24.588 37.220 

Transition 

Probabilities 

1→1 0.021 0.024 0.000 0.080 0.000 0.020 0.029 0.071 

1→2 0.089 0.033 0.033 0.150 0.076 0.083 0.114 0.144 

2→1 0.889 0.021 0.855 0.916 0.872 0.900 0.906 0.916 

2→2 0.062 0.019 0.032 0.086 0.038 0.063 0.078 0.086 

3→1 0.042 0.019 0.021 0.087 0.024 0.040 0.051 0.081 

3→2 0.926 0.035 0.863 0.973 0.902 0.932 0.959 0.973 

Note: (*) Nine category 1 trips are dropped due to failure in convergence of three-regime fully specified models. See footnote 24 for 

details. 
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2.6 DISCUSSION  

 

In this section, we discuss the results of two-regime and three-regime dynamic Markov switching 

models. First, the results of two-regime (constant only and models including all explanatory 

factors- Tables 2.3 through 2.6 are discussed followed by a discussion on three-regime Markov 

switching models (Tables 2.7 through 2.9).  

 

2.6.1 Two Regime Dynamic Markov Switching Models 

2.6.1.1 Two-Regime Constant-Only Models (Table 2.3 and Figure 2.4) 

 

The constant-only models are developed to investigate whether the volatility of entire driving 

cycle is sensitive to regimes, i.e. single estimate of variance for the entire driving cycle or is 

volatility (variance terms) regime dependent? The modeling results (Table 2.3 and Figure 2.4) 

reveal an important finding—that two distinct yet unobserved regimes, acceleration and 

deceleration, exist and the empirical data strongly favor Markov switching dynamic regression 

models26. Wald tests of linear restrictions were conducted for all 38 constant-only models (for 38 

trips), testing the coefficients for intercepts in two regimes for equality (null hypothesis). For all 

38 trips, with 99.5% confidence, the null hypothesis was rejected in favor of alternative 

                                                 
26 Note that the two-regimes were unobserved in the sense that we did not assume a-priori before estimation that 

acceleration and deceleration are two distinct regimes of a typical driving cycle. Instead, we let the Markov 

switching framework identify two distinct regimes from data. As an example, some possibilities regarding the two 

regimes could be, acceleration and deceleration, low and high rate acceleration, low and high rate deceleration, and 

so on. After estimating the Markov switching models, we eventually learned that acceleration and deceleration are 

the two typical regimes that characterize a typical driving cycle. Similar to the original Hamilton’s Markov 

switching application to US gross national product data (Hamilton, 1994), we reached this conclusion based on the 

positive and negative statistically significant intercept terms in the two regimes (Figure 2.4). However, a positive 

intercept in regime 1 does not necessary mean that regime 1 is wholly characterized by positive values (i.e., 

acceleration values). It may be the case that regime 1 (which is identified as acceleration) still contain acceleration 

values near to zero or negative values near to zero, however, the average intercept term is positive and which makes 

us conclude that on-overage acceleration is regime 1, and vice versa for regime 2 (i.e., deceleration) (Hamilton, 

1994). The concept of unobserved yet distinct regimes will become further clearer in case of three-regime models 

which are discussed later.  



 

59 

 

hypothesis, i.e. the differences in intercept values in two regimes are non-zero (Kodde and Palm, 

1986). The existence of two distinct regimes in typical driving cycles (both for category 1 and 2 

trips) is shown by the mean positive coefficients for regime 1 (Figure 2.4), and mean negative 

coefficient for regime 2 for the same trips (Figure 2.4). Relevant findings are listed below: 

 While Table 2.3 presents results of Markov switching models for six trips as illustration, 

similar results were obtained for all 38 sampled trips. By examining the results for all 38 

trips in Figure 2.4, for category 1 trips, the mean acceleration (for all 18 trips) is 0.307 

𝑚/𝑠𝑒𝑐2 as opposed to mean deceleration of -0.547 𝑚/𝑠𝑒𝑐2. Note that for all sampled 

trips (38 trips), the coefficients for intercept terms were consistently positive and 

negative, for the two regimes, indicating the existence of two distinct regimes in typical 

driving cycles. Results show that compared to acceleration, drivers decelerate at a higher 

rate (intercepts of 0.307 𝑚/𝑠𝑒𝑐2 vs -0.547 𝑚/𝑠𝑒𝑐2). However, for category 2 trips 

(Figure 2.4), the difference between magnitudes of mean acceleration (regime 1) and 

mean deceleration (regime 2) is relatively large, i.e., mean acceleration (for all 20 trips) is 

0.235 𝑚/𝑠𝑒𝑐2 whereas mean deceleration is -0.930 𝑚/𝑠𝑒𝑐2. This finding indicates that 

on local routes, drivers may decelerate frequently (and at higher rates) due to presence of 

traffic controls, i.e., signals, stop signs, and yield signs.  

 Importantly, for both category 1 and category 2 trips (Figure 2.4), deceleration is 

statistically significantly more volatile than acceleration, noting mean 𝜎1
2 of 0.224 vs. 

mean 𝜎2
2 of 0.301 for category 1 and mean 𝜎1

2 of 0.373 vs mean 𝜎2
2 of 0.417 for 

category 2 (Figure 2.4). One explanation for this important finding can be that drivers 

react faster to hazardous or difficult situations, e.g. obstruction or a hard-braking car in 
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front, by decelerating harder as compared to their reaction to more non-hazardous 

conditions, e.g., an open road with no other vehicles.  

 Figure 2.4 also summarizes the mean duration that driver stays in each regime. For 

example, for category 1 trips, on average, drivers spend more time accelerating (75 

seconds) as compared to decelerating (58 seconds). Finally, referring to Table 2.3, as 

expected, it can be observed that both regimes i.e. acceleration and deceleration are 

highly persistent i.e. mean 1→1 probabilities of 0.91 and 0.88 for category 1 and 2 trips 

respectively (Table 2.3).  

 

2.6.1.2 Two-Regime Specified Models (Table 2.4 to 2.6) 

 

The number of objects and distance to the closest object were added as potential regime-

dependent explanatory variables. Like constant-only models, implementation of Markov 

switching dynamic regression with explanatory variables still support the existence of two 

distinct regimes. The results in Table 2.4 suggest that the associations of explanatory variables 

are significantly different and distinct in two regimes. Drivers respond differently to increasing 

objects in the acceleration regime as they respond to such a situation during deceleration regime. 

Wald tests of linear restriction for all 38 trips confirmed this finding27 (Kodde and Palm, 1986).  

 

Note that a positive sign of the mean parameter estimate in the acceleration regime (Table 2.4) 

indicates that an increasing magnitude of acceleration is associated with an increase in 

explanatory variable, e.g., presence of greater than three objects around the host vehicle. 

                                                 
27 Wald tests of linear restrictions for all 38 full models were conducted. Specifically, the coefficients for intercepts 

and 𝛽 for explanatory variables in two regimes were tested for equality (null hypothesis). For all 38 trips, at 99.5% 

confidence level, the null hypothesis was rejected in favor of alternative hypothesis i.e. the differences in intercept 

and 𝛽 terms in two regimes are non-zero (Kodde and Palm, 1986). 
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However, a positive sign of the parameter estimate in the deceleration regime indicates decrease 

in absolute magnitude of deceleration with increase in explanatory variable, e.g., presence of 

more objects. This association is characterized by a ↓ sign (negative association) in Table 2.10, 

which summarizes the associations (accounting for statistical significance at 95% confidence 

level) of explanatory variables with two regimes for all trips. A negative sign of parameter 

estimates in Table 2.4 in the deceleration regime indicates increase in absolute magnitude of 

deceleration (i.e. a negative value added with negative response value) with unit increase in 

explanatory variable. This association is conceptualized with ↑ sign (positive association) in 

Table 2.10. 

 

2.6.1.2.1 Category 1 trips undertaken on freeways, state, and freeway and state routes 

 

The results of full models for category 1 trips are summarized in Table 2.5, while summary of 

direction of effects for all trips is presented in Table 2.10. The results suggest that deceleration is 

high rate regime (as compared to acceleration) with mean intercept estimate of -0.368 𝑚/𝑠𝑒𝑐2. 

Furthermore, similar to the results from constant-only models, deceleration is observed 

statistically significantly more volatile than acceleration (mean 𝜎1
2 of 0.203 for acceleration vs 

mean 𝜎2
2 of 0.271 for deceleration) (Table 2.5). 

 

Turning to the estimation results for category 1 trips (Table 2.5), in the acceleration regime, on 

average the number of objects is positively associated with driver propensity to accelerate; note 

that 50th Percentile β is 0.013 in Table 2.5. Moreover, the association between Objects indicator 

and acceleration-regime is statistically significantly positive for 8 trips, whereas it is statistically 
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significantly negative for 6 trips28 (Table 2.10). The difference in associations of Objects 

indicator (positive for 44.44% and negative for 33.33% of trips) on driver’s propensity to 

accelerate in the regime 1 may be an outgrowth of drivers having different perceptions regarding 

their surrounding and thus may make different decisions that match their preferences. However, 

if a driver is observed to be in the deceleration regime, then the Objects indicator (on average) is 

negatively associated with driver propensity to decelerate, or indirectly driver is observed to 

decelerate at a lower rate or even accelerate (i.e. βavg = 0.076 in Table 5). For the association 

between Objects indicator and deceleration-regime, it is statistically significantly negative for 11 

(61.11%) trips, and positive for only 3 (16.66%) trips, and statistically insignificant for 4 

(22.22%) trips (Table 2.10). Both above findings suggest drivers’ tendency (on-average) to get 

out of crowded situations (characterized by greater than or equal to 3 number of objects around 

host vehicle) by accelerating (if driver is in acceleration regime) or to decelerate at a lower rate 

or even accelerate, if a driver is in deceleration regime.  

 

An increase in distance (in feet) to closest object (Range) is associated with an increase in 

acceleration, noting that βavg = 0.065 in the acceleration regime (Table 2.5). Drivers tend to 

accelerate when they have more space around them and can freely maneuver their vehicle. 

Despite the heterogeneity in associations of the Range variable in the deceleration-regime 

(Ahmed et al., 2017, Khattak et al., 2016, Li et al., 2017, Mannering and Bhat, 2014, Mannering 

et al., 2016, Wali et al., 2017a, Wali et al., 2018b, Wali et al., 2018c, Wali et al., 2018d, Wali et 

                                                 
28 We remind that results presented throughout hold for the two categories of trips, category 1 and 2, and not for 

specific roadway types per se. For example, among all the 18 trips in category 1, four trips are undertaken on a 

mixture of freeway and state routes. Thus, the results presented may not be entirely generalizable for trips on 

freeways only.  
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al., 2018e), it is generally statistically significantly negative for 10 trips (55.55%) and positive 

association for only 5 trips (27.77%) (Table 2.10).  

 

2.6.1.2.2 Category 2 trips undertaken on local and state, and local only routes 

 

Table 2.6 presents specified models for category 2 trips, and the direction of associations for all 

trips is presented in Table 2.10. Similar to category 1 trips where deceleration is the observed 

high rate regime compared to acceleration, for category 2 trips (i.e. particularly trips on lower 

functional classification roads), the mean intercepts for acceleration- and deceleration-regime 

vary significantly i.e., 0.344 𝑚/𝑠𝑒𝑐2 vs. -0.776 𝑚/𝑠𝑒𝑐2. Likewise, deceleration is more volatile 

than acceleration as indicated by 𝜎1
2 of 0.337 for acceleration and 𝜎2

2 of 0.424 for deceleration 

(Table 2.6). 

 

Table 2.6 shows that parameter estimates for object indicator and range are all significantly 

different between two regimes for category 2 trips. The magnitudes of differences are 

reasonable, and partly attributable to the fluctuating traffic conditions due to traffic signals and 

stop or yield signs on lower classification roads. In the acceleration regime, Object indicator and 

the Range variable are associated with an increase in acceleration, with βavg of 0.114 and 0.031 

for Objects indicator and Range, respectively (Table 2.6). The positive associations between 

objects indicator and acceleration are fairly consistent across sampled trips in sense that for 

object indicators, the association is positive for 7 (35%) trips and negative for only 2 trips (10%) 

and statistically insignificant for the rest of the trips (Table 2.10). The consistent finding for 

Object indicator is that drivers (on-average) prefer to accelerate given more objects around them 

on local routes. This finding agrees with the one in category 1 trips, showing that drivers (on-
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average) tend to get out of crowded situations. For trips on local roads, the finding that increase 

in Range is associated with drivers’ tendency to accelerate is also intuitive, as larger space 

around the host vehicle will enable drivers to maneuver the vehicles freely. However, this 

finding is not conclusive in the sense that the association between range and acceleration is 

positive for 30% of sampled trips whereas it is negative for 25% of the sampled trips, and this 

requires further investigation.  

 

In the deceleration regime, the Objects indicator is negatively associated with deceleration, i.e. 

with three or more objects around them, drivers on-average tend to accelerate as indicated by 

βavg of 0.019. This finding is again in agreement with the ones observed for category 1 trips. 

Also, in deceleration regime, the negative association between objects indicator and deceleration 

holds true for 9 trips while it is positive for only 4 trips (Table 2.10). Finally, in the deceleration 

regime, increase in Range is associated with drivers’ propensity to accelerate, as expected, and 

the finding seems conclusive in the sense that drivers in 60% of the sampled trips accelerated 

with increasing distance to the nearest object (Table 2.10).  
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Table 2.10 Two-Regime Markov Switching Models - Summary of direction of effects for all 

trips 

Roadway 

Type 

Driving 

Regimes Variable ↑ ↓ 

Not 

Significant at 

95% CL 

Freeways & 

State Routes (N 

= 18 trips) 

Acceleration 

Constant 18 (100%) 0 (0%) 0 (0%) 

Objects indicator 8 (44.44%) 6 (33.33%) 4 (22.22%) 

Range 10 (55.55%) 5 (27.77%) 3 (16.66%) 

Deceleration 

Constant 0 (0%) 18 (100%) 0 (0%) 

Objects indicator 3 (16.66%) 11 (61.11%) 4 (22.22%) 

Range 2 (11.11%) 11 (61.11%) 5 (27.77%) 

Local, State & 

Local Routes 

(N = 20 trips) 

Acceleration 

Constant 19 (95%) 0 (0%) 1 (5%) 

Objects indicator 7 (35%) 2 (10%) 11 (55%) 

Range 6 (30%) 5 (25%) 9 (45%) 

Deceleration 

Constant 0 (0%) 20 (100%) 0 (0%) 

Objects indicator 4 (20%) 9 (45%) 7 (35%) 

Range 5 (25%) 12 (60%) 3 (15%) 

Note: Row-wise percentages sum up to 100.  

 

2.6.2 Three Regime Dynamic Markov Switching Models 

2.6.2.1 Three-Regime Constant-Only Models (Table 2.7 and Figure 2.5) 

 

The three-regime constant-only models are developed to identify the three regimes in a typical 

driving cycle, volatilities associated with each regime, and whether the volatility of entire driving 

cycle is sensitive to regimes, i.e. single estimate of variance for the entire driving cycle or is 

volatility (variance terms) regime dependent?  

 

For Category 1 trips, i.e., trips on freeways, state routes, and freeway and state routes, the 

modeling results (in Table 2.7 and Figure 2.5) reveal that the mean intercepts for regime 1, 2, 

and 3 are 0.542, -0.666, 0.012 respectively. Based on these average intercept values, and its 

higher magnitudes, regime 1, 2, and 3 can be conceptualized as high rate acceleration, high rate 
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deceleration, and constant/cruise state respectively29,30. Moreover, drivers’ on-average tend to 

decelerate at a higher rate than their rate of acceleration (βavg of -0.666 vs 0.542). Note that for 

all sampled trips (38 trips), the coefficients for intercept terms were statistically significant, and 

were consistently positive, negative, and near zero for the three regimes, indicating the existence 

of three distinct regimes in typical driving cycles. Regarding the volatility associated with each 

regime in category 1 trips, high rate acceleration is the most volatile (𝜎1
2 = 0.501) followed by 

high rate deceleration (𝜎2
2 = 0.302) and cruise/constant regime (𝜎3

2 = 0.143). Overall, this 

finding intuitively suggests that compared to cruise/constant regime, drivers instantaneous 

driving decisions are more volatile both in “high-rate” acceleration as well as “high-rate” 

deceleration regime.  

 

For Category 2 trips, i.e., trips on local, local & state routes, the modeling results (in Table 2.7 

and Figure 2.5) reveal that the mean intercepts for regime 1, 2, and 3 are 0.792, -0.824, 0.014 

respectively. Based on these statistics, we identify the three regimes as high-rate acceleration, 

high-rate deceleration, and cruise/constant regime. Again, and intuitively, drivers tend to 

decelerate at higher rates than their rates of acceleration (Figure 2.5). However, in case of 

                                                 
29  Note that the mean intercept values for acceleration and deceleration (0.542 and -0.666) in three-regime 

specification are higher than the mean intercept values for acceleration and deceleration (0.307 and -0.547) in two-

regime specification.  
30 Like the two-regime specification, the regimes in three-regime specification are unobserved i.e., by simply 

observing our dependent variable (column vector containing acceleration/deceleration values) directly we cannot 

know a-priori what the three regimes are. Note that in the two-regime case, it happened to be that by directly 

observing our response outcome, one could have expected acceleration and deceleration as two regimes. However, 

in case of three regimes, by visually inspecting the response outcome, it is impossible to infer exactly what the three 

regimes are and the cut-off points where the regimes change or switch. There can be several possibilities: e.g., 1) 

cruise state, low rate acceleration, and high rate acceleration, 2) cruise state, low rate deceleration, and high rate 

deceleration, and so on.  It is only after application of Markov-switching models that we can mathematically 

quantify the three regimes by a data-driven approach, and the average cut-off points associated with each regime 

from the data at hand. Once the regimes are identified, the correlations between response outcome in each regime 

and explanatory factors are modeled separately in each regime. The concept of unobserved regimes in Markov 

switching framework is explicitly explained by (Hamilton, 1994).  
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category 2 trips, high-rate deceleration (𝜎2
2 = 0.580) is the most volatile regime followed by 

high-rate acceleration (𝜎1
2 = 0.544), and cruise/constant regime (𝜎3

2 = 0.137). Also, for category 

2 trips, the magnitudes of the high rate acceleration and high rate deceleration regimes are higher 

than the corresponding magnitudes for trips on freeways, state routes, and freeway and state 

routes (Category 1 trips) (Figure 2.5). This shows that, given high rate regimes, drivers 

accelerate and decelerate at higher rates on local roads compared to high rate accelerations and 

decelerations on freeways.  

 

2.6.2.2 Three-Regime Specified Models (Table 2.8 and 2.9) 

 

For the specified three-regime models, number of objects surrounding the host vehicle and 

distance to the closest object are added as potential regime-dependent explanatory variables. 

Overall, the results in Table 2.8 and 2.9 support the existence of three distinct driving regimes 

for category 1 and category 2 trips, after controlling for context specific explanatory factors. Like 

the constant-only three-regime models, the three regimes in specified models can be 

conceptualized as high-rate acceleration, high-rate deceleration, and constant/cruise regime 

(Table 2.7 and 2.8). Also, the correlations between explanatory factors and instantaneous driving 

decisions are significantly different and distinct in the three-regime specified models (Table 2.8 

and 2.9). Wald tests of linear restriction for all the trips confirmed this finding where the 

coefficients for intercepts and 𝛽′𝑠 for explanatory variables in the three regimes were tested for 

equality (null hypothesis) and the null hypothesis was rejected for all the trips at 99.5% 

confidence level (Kodde and Palm, 1986).  
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Finally, Table 2.11 summarizes the correlations (accounting for statistical significance at 95% 

confidence level) between explanatory factors and the instantaneous driving regimes. A positive 

sign of the mean parameter estimate in the high-rate acceleration regime (Table 2.8) will indicate 

drivers’ tendency to accelerate (on-average) with an increase in value of explanatory variable. 

However, a positive sign of the parameter estimate in the high-rate deceleration regime (Table 

2.8) will indicate a decrease in absolute value of deceleration with increase in a value of 

explanatory value. This association is characterized by a ↓ sign (negative association) in Table 

2.11. Likewise, a negative sign of parameter estimate in the high-rate deceleration regime (Table 

2.8) will indicate an increase in absolute magnitude of deceleration (i.e. a negative value added 

with negative response value) with unit increase in explanatory variable. This association is thus 

conceptualized with ↑ sign (positive association) in Table 2.11. 

 

2.6.2.2.1 Category 1 trips undertaken on freeways, state, and freeway and state routes 

 

Before discussing the results of specified three-regime models, we note that five category 1 trips 

and nine category 2 trips were dropped from the sample due to non-convergence in model 

estimation. As discussed in section 2.5.5.2, 21% of the data in total sample is lost. However, for 

the trips for which the individual models converged, the results provide deeper insights 

(compared to two-regime models) into the correlation mechanism between instantaneous driving 

regimes and context-specific situational factors. The results of specified three-regime models 

(Table 2.8) suggest that in high-rate acceleration regime, the number of objects surrounding the 

host vehicle and the distance to the nearest object on average are negatively correlated with 

driver’s propensity to stay in high-rate acceleration at next instant of time (βavg of -0.257 and -

0.121 respectively). This seems intuitive as drivers on average, irrespective of their surroundings, 

may not stay in high-rate acceleration regime given that they are already in high-rate acceleration  
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Table 2.11 Three-Regime Markov Switching Models - Summary of direction of effects for all 

trips 

Roadway 

Type Driving Regimes Variable ↑ ↓ 

Not 

Significant at 

95% CL 

Freeways 

& State 

Routes (N 

= 13 trips) 

High Rate 

Acceleration-

Regime 1 

Constant 13 (100%) 0 0 

Objects indicator 2 (15.4%) 6 (46.2%) 5 (38.5%) 

Range 3 (23.1%) 7 (53.8%) 3 (23.1%) 

High Rate 

Deceleration - 

Regime 2 

Constant 0 13 (100%) 0 

Objects indicator 3 (23.1%) 6 (46.2%) 4 (30.8%) 

Range 2 (15.4%) 8 (61.5%) 3 (23.1%) 

Constant/Cruise 

around 0 - Regime 

3 

Constant 3 (23.1%) 6 (46.2%) 4 (30.8%) 

Objects indicator 4 (30.8%) 2 (15.4%) 7 (53.8%) 

Range 8 (61.5%) 1 (7.7%) 4 (30.8%) 

Roadway 

Type Driving Regimes Variable ↑ ↓ 

Not 

Significant at 

95% CL 

Local, 

Local & 

State 

Routes (N 

= 11 trips) 

High Rate 

Acceleration-

Regime 1 

Constant 11 (100%) 0 0 

Objects indicator 2 (18.2%) 4 (36.4%) 5 (45.5%) 

Range 1 (9.1%) 4 (36.34%) 6 (54.5%) 

High Rate 

Deceleration - 

Regime 2 

Constant 0  11 (100%) 0 

Objects indicator 1 (9.1%) 4 (36.3%) 6 (54.5%) 

Range 1 (9.1%) 6 (54.5%) 4 (36.4%) 

Constant/Cruise 

around 0 - Regime 

3 

Constant 1 (9.1%) 1 (9.1%) 9 (81.8%) 

Objects indicator 3 (27.2%) 4 (36.3%) 4 (36.3%) 

Range 3 (27.2%) 2 (18.1%) 6 (54.5%) 

 

regime, and/or the ability to accelerate more at higher rates may be limited. Furthermore, the 

association between objects indicator and high-rate acceleration regime is statistically 

significantly negative for 46.2% (as opposed to positive correlation for 15.4% of trips) of the 

trips. Likewise, the association between range and high-rate acceleration is negative for 53.8% of 

category 1 trips (compared to only 23.1% of trips where the correlation is positive) (Table 2.11). 

Likewise, given that driver is in high-rate deceleration regime at current instant of time, the 

results suggest that with increase in number of objects and distance to the nearest object, drivers 

on-average are less likely to decelerate further at next instant of time, or drivers indirectly 

decelerate at a lower rate or can even accelerate at next instant of time.This result is intuitive and 
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is reflected by the positive βavg of 0.058 and 0.013 for object indicator and range respectively 

(Table 2.8). Moreover, the relationship between object indicator and high-rate deceleration is 

negative for 46.2% of the trips (compared to 23.1% of trips with positive correlation), whereas 

the relationship between range and high-rate deceleration is negative for 61.5% of the trips 

(compared to only 15.4% of trips with positive association). These findings collectively suggest 

that in high-rate deceleration regime, drivers (on-average) tend to get out of crowded situations 

(characterized by greater number of objects around host vehicle) by decelerating at a lower rate 

or even accelerate at next instant of time. 

 

Finally, and intuitively, if a driver is in cruise/constant regime at current instant of time, with 

increasing number of objects around host vehicle and/or with increasing distance to the nearest 

object s(he) is more likely to accelerate (on average) at next instant of time. Moreover, the 

statistically significant positive associations between range and constant/cruise regime hold for 

61.5% of the sampled trips, compared to only 7.7% of the trips where the correlation between 

range and cruise/constant regime is negative Table 2.11). 

   

2.6.2.2.2 Category 2 trips undertaken on local, local and state routes 

 

 Similar to the results for category 1 trips, the results for category 2 trips suggest that in 

high rate acceleration regime, increase in both object indicator and range are on-average 

negatively associated with drivers’ tendency to stay in high-rate acceleration regime at 

next instant of time. As discussed earlier, this may be attributed to the fact that vehicle’s 

ability to accelerate further may be constrained given that vehicle is already in high rate 

regime.   
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 For high-rate deceleration regime, our results suggest that increase in number of objects 

around host vehicle and increase in distance to the nearest object are both negatively 

associated with drivers’ tendency to decelerate further at next instant of time. This is 

reflected in the average βs of 0.058 and 0.013 for object indicator and range respectively 

(Table 2.9). Furthermore, the negative association between object indicator and high-rate 

deceleration regime holds for 36.3% of the sampled trips whereas the negative 

association between range and high-rate deceleration regime holds for 54.5% of the 

sampled trips (Table 2.11). Note that the associations between the explanatory factors and 

high-rate deceleration regime are positive only for 9.1% of the sampled trips (Table 

2.11).  

 

2.6.3 Short-Term Regime Predictions 

Markov switching models have a flexible structure for predicting unobserved regimes. Driving 

regimes can be predicted during each time period (Hamilton, 1993). For details regarding 

forecasting Markov-switching models by different probability estimation methods, interested 

readers are referred to (Hamilton, 1993). For demonstration, we use the two-regime model 

specification for estimating smoothed probabilities that predict the regimes at each time period 

using all sample data (Hamilton, 1993)(Figure 2.6). The switching model considers different 

regime-specific correlations, i.e. instantaneous driving contexts. Figure 2.6 illustrates the key 

elements of short-term regime predictions for a 25-minutes trip undertaken on I-94 freeway in 

Ann Arbor, Michigan. The first panel illustrates the time-series acceleration/deceleration cycle 

for the entire trip; the second panel illustrates the regime-specific variance; and the last panel 

illustrates the smoothed probabilities of observing a process in a specific regime at any instant of 

time. Note that the lowest magnitudes of variance shown in circles correspond to the acceleration 
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regime and vice versa, indicating that deceleration regime is more volatile than acceleration. 

While the results for all other trips are not presented, they are largely similar.  

 
Figure 2.6 Short term prediction of driving regimes 

 

 

2.7 LIMITATIONS/FUTURE WORK  

 

The study is based on a limited number of trips. It is important to note that this study analyzes 

micro time-series instantaneous driving decisions during trips, but the application makes it 

difficult to use the entire large-scale database. Moreover, to extract critical information at the 

micro-level, each trip should be analyzed separately with two- and three-regime model 

specifications. Utilization of data from all trips for individual analysis is computationally 

demanding coupled with the difficulty of interpreting the results in a concise and effective 

manner. However, once the relationships are established at the microscopic level, it should be 

easier to predict short-term decisions. Even though the analyzed trips (N = 43) are randomly 

selected, one-day sample data may not be sufficient for conclusive results. While a two-month 

SPMD sample dataset is available through the Research Data Exchange (RDE, https://www.its-

https://www.its-rde.net/home
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rde.net/home) website, that data cannot be used due to a substantial number of missing 

observations about instantaneous driving contexts, i.e. number of objects surrounding host 

vehicles. Also, the model specification is limited, but it can be enhanced by exploring correlates 

with other variables when such data become available. Also, we acknowledge that if the “type” 

of the nearest object could be identified, it could have helped in extracting richer insights. In 

future, with availability of more detailed data about the type of nearest object, the methodology 

proposed in this study can be extended to understand how different types of nearest objects may 

influence the instantaneous driving decisions of host vehicle’s driver.   

 

Another important consideration relates to the positions of the vehicles surrounding the host 

vehicle. Conceptually, both greater number of vehicles around the host vehicle as well as the 

placement/direction of the vehicles surrounding the host vehicle can influence the drivers’ 

instantaneous driving decisions. To further elaborate the potential influence of vehicles’ 

placement surrounding the host vehicle (social envelope) on the instantaneous driving decisions 

of the host vehicle, Figure 2.7 is presented below (Khattak et al., 2015). For details about social 

interaction and/or gossip algorithms for modeling large-scale behavioral systems, see (Karan and 

Chakraborty, 2016, Srinivasan et al., 2017, Karan and Chakraborty, 2015). The overall driver 

behavior estimation can be conceptualized as a Markov Decision Process (MDP) (Khattak et al., 

2015). Throughout a typical driving task, the driver is required to optimize his/her policy of 

instantaneous driving decisions (acceleration/deceleration) based on the number of vehicles 

surrounding the host vehicle and their placement. For simplicity, assume that the host vehicle is 

traveling on a three lanes roadway segment. Figure 2.7a illustrates the time complexity of the 

driver’s policy optimization process. Depending on the number of features (slots around the host 

https://www.its-rde.net/home
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vehicle where a vehicle can be present or otherwise) considered, the MDP states grow in the 

order of 2𝑛, where 𝑛 is the number of features considered.  With eight features considered 

(Figure 2.7a), the possible number of MDP states are 256. Figure 2.7c through 2.7e present few 

of the possible MDP states. When the host vehicle is surrounded by greater number of vehicles, 

one can expect that the host driver will accelerate (as our analysis suggests) but only if the slot in 

front of the host vehicle is empty (Figure 2.7c and 2.7d). Contrarily, if the host vehicle is in a 

situation where the front slot is occupied by another vehicle (Figure 2.7e), the driver must 

decelerate no matter he/she is surrounded by greater number of objects or otherwise. Due to the 

data unavailability about the placements of vehicles surrounding the host vehicle, the driver 

behavioral models presented in this study cannot capture the influence of “positions” of the 

surrounding vehicles on the instantaneous driving decisions of the host vehicle. As more detailed 

data become available in the future, accounting for this dimension in the overall driver behavior 

estimation can yield in more realistic driver behavioral models in a connected vehicles 

environment.   
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 Figure 2.7 Illustration of time complexity of the drivers’ policy optimization process as a 

function of number of surrounding vehicles and their placement.  

(Notes: MDP is Markov Decision Process; 1/0 indicates if the slot surrounding the host vehicle 

is occupied or not; L is left; R is right; LF is left front; RF is right front; F is front; LB is left 

back; RB is right back; B is back; X is slot/feature blocked/not considered.) 

 

 

2.8 CONCLUSION/IMPLICATIONS 

 

This study focuses on utilizing large-scale high frequency data generated by data acquisition 

systems (DAS) that are installed in vehicles to facilitate V2V and V2I infrastructure 

communications via state-of-the-art communication and sensor technologies such as dedicated 

short-range communications. As part of USDOT Safety Model Pilot Deployment program, real-

world large-scale empirical data transmitted between connected vehicles and infrastructure are 

used to investigate instantaneous driving decisions and its variation with respect to the ecosystem 

of mapped local traffic states in close proximity surrounding the host vehicle. To achieve the 

objectives, state-of-the-art time-series methods such as Markov-switching dynamic regression 

models were applied.  
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By conducting a detailed analysis of 43 randomly chosen trips that were undertaken on various 

roadway types, the study explores important questions related to instantaneous driving decisions 

in connected vehicle environment. Note that, the sampled trips account for 52% of the total one-

day sample (714, 340 BSM packets out of total N = 1, 399, 084 BSM packets).  To facilitate 

more meaningful conclusions, the entire vehicle trajectories for 43 randomly selected trips were 

visualized in Google Earth to identify the roadway functional classification on which the trips 

were undertaken.  As such, significant efforts went into classifying the trips with respect to 

roadway type, and in processing the large-scale connected vehicle data. Altogether, the 43 trips 

are undertaken by 34 vehicles whereas few vehicles undertook two or more than two trips. The 

new proposed methodology helps in understanding instantaneous driving decisions in detail, and 

for providing answers to the following questions: 

 How can driving regimes be characterized in a typical driving cycle? 

 What is the level of volatility in each driving regime? 

 When do the regimes change or how long do they last? 

 Are driver decisions consistent across trips undertaken by different drivers? 

 Do correlates vary across the regimes? 

 

To answer the afore-mentioned questions, Expectation Maximization algorithm based on 

maximum likelihood was used for estimating Markov Switching Dynamic Regression models. 

First, for simplicity, the study categorized instantaneous short-term driving performance into two 

unobserved regimes and as such two-regime Markov Switching Dynamic Regression models 

were estimated for all trips. The results reveal that acceleration and braking are two distinct 

regimes in a typical driving cycle, with braking showing substantially greater volatility. 
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Compared to braking, acceleration regime typically lasts longer i.e. 75 seconds (switching time 

on average) for trips on freeways, state routes, and freeway and state routes. In addition, analysis 

reveals that driver decisions are not consistent across different trips as some drivers show greater 

volatility than others, especially on local and state, and local roads as expected. Importantly, 

when more objects surround a vehicle, the tendency is to accelerate even more if a driver is in 

acceleration regime, and to accelerate or lower the intensity of their braking if driver is in 

braking regime. Lastly, the magnitudes of associations between key correlates and instantaneous 

driving behavior vary significantly across the two regimes.  

 

Real-world driving is a complex task and we can anticipate existence of more than two regimes. 

Thus, we allowed for a more generic dynamic Markov switching model specification where the 

instantaneous driving decision process was modelled as a three-regime process. The results 

suggest existence of three distinct and unobserved regimes, which are identified as high-rate 

acceleration, high-rate deceleration, and cruise/constant regime. Moreover, given in a high-rate 

regime, drivers on-average tend to decelerate at a higher rate than their rate of acceleration. 

Importantly, we observed that compared to cruise/constant regime, drivers instantaneous driving 

decisions are more volatile both in “high-rate” acceleration as well as “high-rate” deceleration 

regime. Finally, the three-regime specification suggested that in high-rate deceleration regime, 

drivers (on-average) tend to get out of crowded situations by decelerating at a lower rate or even 

accelerate at next instant of time. 

 

The results obtained from this study has important implications. First, the study presents an 

appropriate analytical framework that can help in understanding instantaneous driving decisions 
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and key correlates. Driving decisions primarily depend on surrounding traffic states. An in-depth 

analysis of such factors is important for understanding driver specific behavior and for 

developing customized driver based safety applications. For instance, researchers and 

practitioners can implement the proposed methodology to connected vehicle data generated by 

specific driver for several trips. For a specific driver, quantification of the associations between 

instantaneous driving decisions and driving contexts can help us understand driver-specific 

instantaneous volatility, and to develop hazard anticipation and notification systems if a driver is 

observed to deviate from his/her normal driving patterns. Furthermore, given a specific driver 

and keeping in view his/her historical instantaneous driving decisions with respect to local 

traffic states, alerts and warnings can be provided well in advance to driver specifically if he/she 

is decelerating. Given that deceleration is consistently observed to be more volatile, such alerts 

and warnings can potentially help in improving safety and traffic flow disturbances. Finally, an 

important aspect of developing such hazard anticipation and notification systems is the need to 

be able to perform short term driving regime predictions. Thus, we demonstrate the potential of 

dynamic Markov switching models in terms of short-term instantaneous regime prediction at 

specific instances in time. While the current study focused on instantaneous driving decisions in 

longitudinal direction only, as part of future work, it would be interesting to develop a 

methodology for simultaneous analysis of instantaneous driving decisions in longitudinal as well 

as lateral direction. Such a methodology can potentially help in understanding the correlations 

between instantaneous driving decisions in longitudinal and lateral directions, and how such 

decisions can be mapped to surrounding traffic environment.   
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CHAPTER 3 CAN DATA GENERATED BY CONNECTED VEHICLES ENHANCE 

SAFETY? A PROACTIVE APPROACH TO INTERSECTION SAFETY 

MANAGEMENT 
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This chapter presents a modified version of two articles to which Behram Wali made extensive 

contributions to. Can Data Generated by Connected Vehicles Enhance Safety? A proactive 

approach to intersection safety management by Mohsen Kamrani, Behram Wali, and Asad J. 

Khattak. Peer-review conference paper: Presented in a podium session at the 96th Transportation 

Research Board Annual Meeting 2017, Washington D.C. Journal article: Published in 

Transportation Research Record: Journal of Transportation Research Board, 2659 (2017): 80-90. 

 2017 TRB Outstanding Paper Award for the paper “Can Data Generated by Connected 

Vehicles Enhance Safety? Proactive Approach to Intersection Safety Management” 

Awarded by TRB Safety Data, Analysis and Evaluation Committee.  

 

ABSTRACT 

 

Traditionally, evaluation of intersection safety has been largely reactive, based on historical crash 

frequency data. However, the emerging data from Connected and Automated Vehicles (CAVs) 

can complement historical data and help in proactively identify intersections which have high 

levels of variability in instantaneous driving behaviors prior to the occurrence of crashes. Based 

on data from Safety Pilot Model Deployment in Ann Arbor, Michigan, this study developed a 

unique database that integrates intersection crash and inventory data with more than 65 million 

real-world Basic Safety Messages logged by 3,000 connected vehicles, providing a more complete 

picture of operations and safety performance of intersections. As a proactive safety measure and a 

leading indicator of safety, this study introduces location-based volatility (LBV), which quantifies 

variability in instantaneous driving decisions at intersections. LBV represents the driving 

performance of connected vehicle drivers traveling through a specific intersection. As such, by 

using coefficient of variation as a standardized measure of relative dispersion, LBVs are calculated 
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for 116 intersections in Ann Arbor. To quantify relationships between intersection-specific 

volatilities and crash frequencies, rigorous fixed- and random-parameter Poisson regression 

models are estimated. While controlling for exposure related factors, the results provide evidence 

of statistically significant (5% level) positive association between intersection-specific volatility 

and crash frequencies for signalized intersections. The implications of the findings for proactive 

intersection safety management are discussed in the paper.  

 

3.1 INTRODUCTION 

 

There is considerable evidence about vehicle conflicts at intersections resulting in crashes, 

making them among the most dangerous locations on roadways (Abdel-Aty and Haleem, 2011, 

Persaud and Nguyen, 1998). Traditionally, intersection safety evaluations are done based on 

historical data and they are largely reactive i.e. the state-of-the-art methods characterize unsafe 

intersections based on historical and expected crash frequencies (Persaud and Nguyen, 1998, 

Kamrani et al., 2014). Safety treatments can then be applied to intersections based on historical 

crash data methodology. Variability in instantaneous driving behaviors can be leading indicators 

of occurrence of unsafe outcomes such as crashes/incidents. In this study, we posit that 

expanding the concept of driving volatility (Khattak et al., 2015, Khattak and Wali, 2017, Wang 

et al., 2015) to specific locations (termed as Location-Based Volatility) by using real-world 

large-scale connected vehicle data has a significant potential in unveiling critical relationships 

between extreme driving behaviors (and its fluctuations) and safety outcomes at specific 

intersections.  

 



 

 

 

83 

 

The Safety Pilot Model Deployment (SPMD) offers detailed and relevant data. This pilot is 

underway in Ann Arbor, Michigan, intended to demonstrate vehicle-to-vehicle (V2V) and 

vehicle-to-infrastructure (V2I) communication in a real-world environment. Within SPMD, 

Basic Safety Messages (BSMs) contain rich information packets (exchanged at the frequency of 

10 Hz) that describe a vehicle’s position, motion, its component status, and other relevant 

information exchanged between vehicles/infrastructure through V2V and V2I applications 

(Henclewood, 2014). Such emerging data has been used for creating trip-based driving 

volatilities for drivers, capable of identifying abnormal or extreme behaviors prior to unsafe 

outcomes such as crashes/incidents (Liu and Khattak, 2016b). Important in this aspect is the 

concept of “driving volatility” that captures the extent of variations in driving, especially hard 

accelerations/braking, jerky maneuvers, and frequent switching between different driving 

regimes (Khattak and Wali, 2017). Specifically, Wang et al. (Wang et al., 2015) and Liu and 

Khattak (Liu and Khattak, 2016b) examined the relationships between trip-based driving 

volatility and several factors such as demographics, trip purpose, duration, and detailed vehicle 

characteristics (Liu and Khattak, 2016b, Wang et al., 2015). The potential of driver-specific trip-

based volatilities for developing advanced traveler information systems, driving feedback 

devices, and alternative fuel vehicle purchase decision tools were concluded (Liu and Khattak, 

2016b, Wang et al., 2015).  

 

This study focuses on developing an analytic methodology to examine instantaneous driving 

behaviors at specific locations, and its variability. The paper explores how variability in driving 

can be mapped to historical safety outcomes such as crashes at specific locations. Such an 

analysis is fundamental towards proactive intersection safety management.  
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3.2 LITERATURE REVIEW 

 

There are different branches of ongoing research topics in the connected vehicles (CV) area. 

Several major directions of research can be identified. Topics such as network robustness and 

information propagation efficiency (Osman and Ishak, 2015) are still under investigation in order 

to establish a better vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) connection 

(Osman and Ishak, 2015). Another is the systems and algorithms whose ultimate goal are the 

reduction of the gap between vehicles in order to increase roads capacity and reduction in fuel 

consumption through different methods such as speed harmonization (Ghiasi et al., 2017), 

trajectory optimization, and platooning  as discussed in Bergenhem et al. (Bergenhem et al., 

2012).  

 

Also, there are a number of studies (not necessarily in CV area) trying to characterize aggressive, 

reckless or risky driving style (NHTSA, 2000). Among them, speed limits are usually the 

threshold that determines a driver’s performance (Wali et al., 2017b, Haglund and Åberg, 2000). 

While characterizing driver’s performance, the important finding is that risky driving behaviors 

have been found to be positively correlated with the likelihood of crashes or near-crash events 

(Paleti et al., 2010). This said, a broad spectrum of studies related to connected vehicle systems 

have proposed mechanisms for warnings or alerts to drivers using the CV applications and their 

effect on safety. For instance, Chrysler et al. (Chrysler et al., 2015) investigated the effect of 

warning messages on drivers’ ability to handle primary and secondary threats. The results 

showed an improved detection time for the primary threat while increased reaction time to the 

secondary threat which was placed after the primary threat. In another study (Genders and 

Razavi, 2015), the impacts of dynamic route guidance on work zone safety under different 
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market penetration of CV were explored. Per the interesting results, 40% penetration of CV and 

below improves safety while above that leads to decreased safety of work zones. However, these 

benefits are dependent on the information dissemination delay (Du and Dao, 2015). Although, 

positive effects of warning messages have been investigated, the way those warning should be 

created from BSMs is still under explored.  

 

One approach is trying to link the generation of warning messages to drivers’ behavior. In some 

recent studies, the authors have initiated efforts to extract useful information from BSMs to 

understand the drivers’ behavior. For instance, a measure of driving performance in connected 

vehicles network has been defined as “driving volatility” (Wang et al., 2015). As such, trip-based 

driving volatility was introduced (Wang et al., 2015) to account for the variation of driving 

behaviors under different conditions using objective driving performance evaluation matrix i.e. 

vehicular jerk. More succinctly, Liu et al. (Liu et al., 2014) studied extreme driving behaviors 

(trip-based volatility) using exhaustive high frequency connected vehicle data, and the analysis 

demonstrated framework for the generation of warnings/alerts for connected vehicles informing 

drivers about potential hazards. Also another study (Liu and Khattak, 2016a)  proposed a way to 

identify abnormal or extreme behaviors (i.e., hard acceleration and decelerations) from BSMs, 

and warn drivers through the V2V, V2I, or other connected vehicle applications. In this paper, 

the authors believe that expanding the concept of driving volatility in connected vehicles 

environment to specific locations has significant potential in identifying hazardous roadway 

segments. Such a perspective of location-specific driving behavior in connected vehicle systems 

has not been identified and analyzed. Therefore, this paper is aimed at developing the new 

concept of location-based driving volatility (LBV) via using BSMs exchanged between 
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connected vehicles in real-world and linking it to historical crash data with the purpose of 

identifying hazardous spots proactively. Although the novelty of this study is in using high 

volume and high velocity connected vehicle data, the significance of works done by other 

researchers on crash frequency cannot be overlooked, given the emergence of new approaches, 

e.g., see Lord & Mannering (Lord and Mannering, 2010). Also random parameter and/or varying 

coefficient models have become popular as opposed to fixed parameter for their capability to 

address unobserved heterogeneity (Anastasopoulos and Mannering, 2009, Li et al., 2017, 

Khattak et al., 2016).  

 

3.2.1 Research Objective and Contribution 

The objectives of this study are to:  

1) Quantify instantaneous driving decisions and its variability in intersection-specific 

Basic Safety Messages (BSMs).  

2) Understand the relationship between intersection-specific volatility with crash 

frequencies, while controlling for other variables, using rigorous statistical tools.  

 

The present study contributes by analyzing real-world large-scale connected vehicle data to 

extract critical driving behavior information embedded in raw BSMs. Such an analysis is 

important because driving actions and behaviors are believed to be the main cause of traffic 

crashes, and understanding the relationship between location-based volatility and historical crash 

data can provide fundamental knowledge regarding proactive safety countermeasures. A unique 

aspect of this study is that significant efforts have been undertaken to integrate large-scale 

connected vehicle data (more than 65 million BSMs) with intersection crash and inventory data 
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in order to provide providing a more complete picture of operations and safety performance of 

intersections. The assembled database allows investigation of correlations between potentially 

leading indicator of safety (location-based volatility) and historical crash frequencies. By taking 

the first step towards proactive safety using large-scale connected vehicle data, the current study 

is original and timely in sense that real-world data has been processed and used to understand the 

phenomena under discussion.  

 

3.3 METHODOLOGY 

 

3.3.1 Conceptual Framework 

The two-month connected vehicle data from Safety Pilot Model Deployment (SPMD) 

(https://www.its-rde.net/home) contains rich information (i.e., basic safety messages in 10 Hz) 

that was exchanged between vehicles/infrastructure through vehicle-to-vehicle (V2V) and 

vehicle-to-infrastructure (V2I) applications. Such data provide us with an opportunity to 

scrutinize the mechanisms that lead to unsafe events on roadways. However, the methods of 

making a good use of such high-volume and high-resolution data need further development. 

SPMD collects Basic Safety Messages (BSMs) that describe a vehicle’s position, motion, its 

component status, and other relevant travel information (Henclewood, 2014). However, BSMs 

are not informative to drivers when they need to make decisions based on information received 

through V2V or V2I applications. Most BSMs describe normal driver behaviors while abnormal 

and highly fluctuating driver behaviors determine the safety of driving in the short-term. 

 

This study is focused on developing an innovative methodology for estimating location-based 

volatility for specific intersections and comparing it with their observed crashes. We 

https://www.its-rde.net/home
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hypothesized that the nature of extreme instantaneous driving behaviors at intersections can be 

correlated with their crash history. Such correlations can help us understand instantaneous 

driving behaviors and how they relate to transportation safety. Location-based volatility (LBV) 

represents the driving performance of a substantial number of users traveling through a specific 

location. LBV may play a critical role in highway safety management, as it will highlight 

locations where many drivers behave differently from other locations. Proactive countermeasures 

can be considered in such locations. If many drivers make extreme driving behaviors or if 

driving behaviors are highly fluctuating at certain locations, the reasons of such extreme 

behaviors may be related to factors such as the road conditions. Such information can be 

disseminated to connected vehicle drivers through roadside equipment (RSE) which are able to 

send information to vehicles, and thus drivers may be alerted about potential hazards (e.g. 

conflicts/intersection sight distance) while traveling through certain intersections. 

 

First, the connected vehicle data consisting of geo codes and longitudinal acceleration were 

cleaned. In the next step, 116 intersections were identified in Ann Arbor, Michigan (discussed 

later). Crash data along with other geometric elements (provided in Table 3.1) were collected. 

Then, four different coefficients of variation (𝐶𝑉𝐴𝐿
, 𝐶𝑉𝐴𝐻

, 𝐶𝑉𝐷𝐿
, 𝐶𝑉𝐷𝐻

) are calculated and used as 

measures of location-based volatility (LBV) for each intersection (150 ft. from the center of each 

intersection). Given the hypothesis that higher LBV is likely to be positively correlated with 

historical crash data at intersections, appropriate statistical models are developed to investigate 

the correlation between LBV (among other traffic exposure factors) and crash frequency. The 

knowledge generated from the modeling results can identify intersections where drivers, on 

average, show higher volatility in their instantaneous driving decisions (e.g. longitudinal 
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acceleration), and where such volatilities are found to be correlated with crash frequency. By 

carefully analyzing high-resolution real-world data transmitted between connected vehicles and 

applying appropriate statistical methods, we can ultimately generate proactive (rather than the 

traditionally reactive safety approach) alerts and warnings given to vehicle drivers at 

intersections. Such proactive warning and alerts can be disseminated through roadside equipment 

to vehicles approaching specific intersections to warn them regarding the chance or ranking of 

intersection in terms of crash occurrence. In the next section, the computation of LBV is 

discussed. 

 

3.3.2 Location Based Volatility 

Understanding instantaneous driving volatility at specific intersections is one of the most 

challenging aspects of the current study. To calculate location-based volatility, different 

instantaneous driving measures can be used such as accelerations, steering angles or position of 

brakes (Liu and Khattak, 2016b). As explicitly discussed in Liu and Khattak (Liu and Khattak, 

2016b), volatility in trip-based instantaneous driving decisions should be captured by considering 

both longitudinal and lateral accelerations. Considering longitudinal acceleration as the only 

measure of driving volatility can mask important information embedded in instantaneous driving 

data. For instance, at moments longitudinal acceleration can be low and thus considered normal, 

but the driver could still be volatile due to large magnitudes of lateral accelerations.  

  

To calculate LBV, the authors intended to use longitudinal and lateral acceleration as they are 

direct outcomes of vehicle maneuvering. However, due to a considerable amount of questionable 

lateral acceleration data (see Data Accuracy section), only longitudinal acceleration data were 
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used. The longitudinal acceleration data is reasonable and available for all BSMs and has been 

error checked by estimating accelerations from speed trajectories of the vehicles. Given the data 

limitation, this study only focuses on capturing location-based volatility by using longitudinal 

accelerations. There are two reason for this decision: First, excluding lateral acceleration does 

not seem to be affecting the results drastically since lateral acceleration is more informative in 

trip based volatility calculation where curvature of the road changes and where the length of the 

trip allows several lane changes. Second, using the data with removed lateral acceleration 

reduces the amount of data for several intersections leading to reduction of sample size i.e. 

number of intersections. 

 

3.3.3 Calculation of LBV 

The present study uses a standardized measure of dispersion called Coefficient of Variation (𝐶𝑉) 

(also known as the ratio of relative standard deviation) for quantifying the fluctuations in 

longitudinal acceleration /decelerations at a specific intersection. Note that different measures 

such as range, interquartile range, variance or standard deviation can be used for capturing 

variability in longitudinal accelerations. Although standard deviation and variance are preferable 

as whole information embedded in the data is used for calculation of variability, both measures 

are insensitive to magnitude of acceleration values in the data. Thus, we prefer the relative 

measure of dispersion (Coefficient of Variation), where the dispersion in accelerations or 

decelerations can be quantified as the proportion of their means. This approach can capture the 

variability (e.g. standard deviation) in instantaneous driving decisions with respect to the mean 

accelerations or decelerations undertaken by different drivers at a specific intersection.  
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To compute volatility for each intersection, two speed bins (see Figure 3.1a), one from minimum 

observed speed to the mean and one from the mean to maximum speed were considered. The 

rationale behind considering speed bins is that the acceleration capability of a vehicle depends on 

current vehicle speed i.e. at larger speeds the capability to accelerate decrease as compared to 

acceleration capability at lower speeds. For each bin within an intersection, acceleration and 

deceleration values are separated, and the means and standard deviations are computed. Finally, 

𝐶𝑉 as a measure of LBV is obtained by dividing standard deviations of accelerations to the mean. 

For each intersection, four 𝐶𝑉s are reported as shown in Figure 3.1a. The calculated 𝐶𝑉s for a 

specific intersection provide the relative measure of dispersion of longitudinal accelerations with 

respect to their means, and thus different intersections can be compared based on their 𝐶𝑉s. 

 

3.3.4 Modeling Approach 

After quantification of volatility for each intersection, we investigate the correlations between 

location-based volatility (for each intersection), crash data, and other traffic related factors. 

Appropriate modeling can provide an empirical evidence as of how intersection location-based 

volatility relates to historical crash data. Given the count nature of crashes, Poisson and/or 

Poisson-gamma models (Negative Binomial) can be estimated depending on the mean and 

variance of crash data.  

 

For a Poisson model, the probability of having a specific number of crashes “n” at intersection 

“i” can be written as (Greene, 2003): 

𝑃(𝑛𝑖) =
exp (−𝜆𝑖)𝜆𝑖

𝑛

𝑛𝑖!
 

Equation 3.1 
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Figure 3.1 a) Four quadrants used to calculate coefficients of variation (standard deviation 

divided by mean) for each intersection, b) Plot of used data (left)/ Histogram of lateral 

acceleration (right) 
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Where: 𝑃(𝑛𝑖) is probability of crash occurring at intersection “i”, “n” times per specific time-

period; and 𝜆𝑖 is Poisson parameter for intersection “i” which is numerically equivalent to 

intersection “i” expected crash frequency per year 𝐸(𝑛𝑖). The regression can be fitted to crash 

data by specifying 𝜆𝑖 as a function of explanatory variables such as location-based volatility, 

Annual Average Daily Traffic, and speed limits on major and minor approach. Formally, 𝜆𝑖 can 

be viewed as a log link function of a set of independent variables (Greene, 2003): 

ln(𝜆𝑖) = 𝛽(𝑋𝑖) Equation 3.2 

 

Where 𝑋𝑖 is a vector of explanatory variables and 𝛽 is a vector of estimable parameters. 

Application of Poisson regression to over-dispersed crash data can result in inappropriate results. 

If mean and variance of crash data are not equal, corrective measures are applied to Equation 3.2 

by adding an independently distributed error term ∈. While presence of over-dispersion can be 

indicated by the mean and variance of crash data (Greene, 2003), formally a Lagrange multiplier 

can be performed to statistically test the existence of over- dispersion in Poisson model (Greene, 

2003). The test statistic is defined as: 

𝐿𝑀 = [
∑ [(𝑦𝑖 − 𝜇𝑖)

2 − 𝑦𝑖]
𝑛
𝑖=1

2 ∑ 𝜇𝑖
2𝑛

𝑖=1

]

2

 
Equation 3.3 

 

 

Where: 𝑦𝑖 are actual crash frequency for intersection “i”, 𝜇𝑖 is expected crash frequency for 

intersection “i” as predicted by Poisson model, and 𝑛 are number of observations. The null 

hypothesis is that Poisson regression is appropriate for the crash data at hand. Under this 

hypothesis, the LM test statistic should have chi-square distribution with degree of freedom 

equal one. If the asymptotic chi-square distribution obtained from Equation 3.3 is less than 
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critical chi-square of 3.84 at 95% level of confidence, Poisson regression should be favored, 

otherwise Negative Binomial regression can be more appropriate (Greene, 2003).  

 

Finally, it is likely that the associations between key explanatory variables and crash frequency 

may not be consistent across intersections. The intrinsic unobserved heterogeneity can arise due 

to several observed and unobserved factors related to intersection crash frequency, which may 

not be available in the data at hand. This is referred to omitted variable bias in safety literature 

(Greene, 2003). Furthermore, if key variables are omitted from analysis and too few variables are 

included in the model, it is likely that location-based volatility (explanatory factor) can capture 

those effects and may not be the true association between location-based volatility and crash 

frequency. One way to address this issue is to allow parameter estimates to vary across 

observations (Greene, 2003). As such, random parameters can be included in the estimation 

framework as: 

𝛽𝑖 = 𝛽 + 𝜑𝑖 Equation 3.4 

 

Where 𝜑𝑖 is randomly distributed term with any pre-specified distribution such as normal 

distribution with mean zero and variance 𝜎2.With Equation 3.4, the Poisson parameter in 

Equation 3.2 becomes: 

𝜆𝑖|𝜑𝑖 = 𝑒𝐵𝑋 Equation 3.5 

 

And, the Poisson parameter in Equation 3.2 in Poisson-Gamma model becomes: 

𝜆𝑖|𝜑𝑖 = 𝑒𝐵𝑋+𝜖 Equation 3.6 
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Finally, the following likelihood function for random-parameter model can be maximized 

through maximum simulated likelihood technique (Anastasopoulos and Mannering, 2009): 

𝐿𝐿 = ∑ 𝑙𝑛 ∫ 𝑔(𝜑𝑖)𝑃(
𝑖

𝜑𝑖𝑖
𝑛𝑖|𝜑𝑖)𝑑𝜑𝑖 

Equation 3.7 

 

 

Where: g(.) is the probability density function of randomly distributed term with pre-specified 

distribution such as normal distribution with mean zero and variance 𝜎2. More details on random 

parameter models can be found in (Anastasopoulos and Mannering, 2009).  

 

3.4 DATA 

 

The data used in this study (retrieved from https://www.its-rde.net/home) are BSMs from 

vehicles participating the SPMD in Ann Arbor, Michigan. SPMD is a comprehensive data 

collection effort, under real-world conditions, at Ann Arbor test site with multimodal traffic 

hosting approximately 3,000 connected vehicles equipped with V2V and V2I communication 

devices. BSMs are frequently transmitted messages (usually at 10Hz) that is meant to increase 

vehicle’s situational awareness. At its core, the dataset contains vehicle’s instantaneous driving 

statuses of vehicle’s position (latitude, longitude, and elevation) and motion (heading, speed, 

accelerations).  

 

To examine correlations, location-based volatility (LBV) data for each intersection (as explained 

earlier) are linked with historical crash data, annual average daily traffic (AADT) data for major 

and minor approaches, speed limits on major and minor approaches, and number of approaches 

at each intersection. Such data are publicly available at the website of the Metropolitan Planning 

https://www.its-rde.net/home
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Organization: http://semcog.org/Data-and-Maps. Out of all intersections in the Ann Arbor area, 

116 intersections are identified for which connected vehicle data are available, i.e. connected 

vehicles pass through such intersections and generating enough data for calculation of LBV. 

Finally, five years of crashes (2011-2015) along with geometric factors and flows were extracted 

and linked to LBV for each intersection. Note that the data are not available in spreadsheet 

format, and thus significant efforts went into carefully extracting data manually and linking it to 

LBV for 116 intersections. 

 

3.4.1 Data Accuracy 

Based on the distributions of key variables provided in Table 3.1, the data seems to be of 

reasonable quality. To assure the accuracy of intersection data, after initial collection, another 

person checked 10% of intersection data randomly and no discrepancies were observed. Also, 

the descriptive statistics of intersection data in Table 3.1 provide reasonable difference between 

signalized and un-signalized intersections. The major inaccuracy of data is from the lateral 

acceleration as it is shown in Figure 3.1b. Since 27,240,788 data points (42% of the data) had the 

maximum allowable value that can be recorded in DSRC devices (2g), lateral acceleration data 

was not used in the analysis.  

 

 

 

 

 

 

 

http://semcog.org/Data-and-Maps/Map-Gallery
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Table 3.1 Description of Key Variables and Descriptive Statistics 

Variables 
All Intersections (N = 116) Signalized (N = 53) Un-signalized (N=63) 

Mean SD Min/Max Mean SD Min/Max Mean SD Min/Max 

Average 

crashes  

(5 years) 

7.56 7.64 0/44 12.94 8.03 1/44 3.04 2.95 0/14 

Average 

rear-end 

crashes (5 

years) 

4.28 4.56 0/24 7.07 5.24 1/24 1.93 1.79 0/9 

𝐶𝑉𝐴𝐿
 (In 

percent) 
143.7 56.0 69/239 182.4 57.5 83/329 111.1 26.12 69/191 

𝐶𝑉𝐴𝐻
 (In 

percent) 
84.9 13.7 56/121 77.93 12.7 59/113 90.77 11.8 57/121 

𝐶𝑉𝐷𝐿
 (In 

percent) 
137.5 43 71/287 168.6 41.1 87/287 111.2 21.94 71/181 

𝐶𝑉𝐷𝐻
 (In 

percent) 
96.29 12.9 57/155 99.44 14.8 76/155 93.64 10.39 57/115 

AADT 

major road 
20805 8326 3100/45400 22747 8209 3600/45400 19171 8131 3100/38900 

AADT 

minor road 
9396 4138 1100/27400 9994 5706 3100/27400 8893 1972 1100/13400 

Ln (AADT 

major road) 
9.84 0.49 8.03/10.72 9.96 0.39 8.18/10.72 9.74 0.54 8.03/10.56 

Ln (AADT 

minor road) 
9.05 0.47 7/10.21 9.07 0.52 8.03/10.21 9.03 0.42 7/9.50 

Speed limit 

major 
35.34 7.24 25/45 35.94 7.34 25/45 34.84 7.18 25/45 

Speed limit 

minor 
30.47 3.95 25/45 30.84 5.16 25/45 30.15 2.53 25/40 

4-legged 

intersection 
0.4 0.49 0/1 0.622 0.48 0/1 0.22 0.41 0/1 

Total 

through 

lanes 

4.45 1.28 2/8 5.13 1.35 2/8 3.38 0.9 2/6 

Total left 

turn lanes 
1.53 1.32 0/6 2.26 1.4 0/6 0.92 0.88 0/3 

Total right 

turn lanes 
0.93 0.78 0/4 1.11 1.01 0/4 0.79 0.48 0/2 

 Notes:𝐶𝑉𝐴𝐿
: Coefficient of variation of acceleration below mean speed of intersection;𝐶𝑉𝐴𝐻

: 

Coefficient of variation of acceleration above mean speed of intersection;𝐶𝑉𝐷𝐿
:  Coefficient of 

variation of deceleration below mean speed of intersection;𝐶𝑉𝐷𝐻
: Coefficient of variation of 

deceleration above mean speed of intersection; AADT: Annual Average Daily Traffic; SD is 

standard deviation; Min is minimum value; Max is maximum value.  
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3.5 RESULTS 

 

3.5.1 Descriptive Statistics 

Table 3.1 presents the descriptive statistics of key variables used in modeling. The mean, 

standard deviation, minimum and maximum values are given for each variable which can help 

conceptualizing the distributions. Descriptive statistics are given for all the intersections (N=116) 

as well as for signalized intersections (N=53) and un-signalized intersections (N=63) separately. 

For all intersections, signalized, and un-signalized intersections, the mean five-year crash 

frequency is 7.56, 12.94, and 3.04. As expected, signalized intersections have significantly 

higher crash frequency (on average) than un-signalized intersections. This finding is in 

agreement with Abdel Aty and Keller (Abdel-Aty and Keller, 2005) who found approximately 

9.6 crashes per year at signalized intersections as opposed to only 2 crashes per year on un-

signalized intersections (Abdel-Aty and Keller, 2005). There can be several factors which may 

contribute to occurrence of crashes at signalized intersections such as conflicting movements as 

well as different intersection-specific design variables (Abdel-Aty and Keller, 2005). This said, 

investigating instantaneous driving actions at such locations, and higher volatility (if any) may 

help us design appropriate proactive strategies from preventing an “accident waiting to happen” 

(Schneider et al., 2004).  

 

Regarding location-based volatility, all 𝐶𝑉 statistics suggest that signalized intersections on 

average have higher variability in longitudinal accelerations/decelerations compared with 

unsignalized intersections, and thus can be more volatile (this is the case for all 𝐶𝑉’s except 

𝐶𝑉𝐴𝐻
). One reason for higher 𝐶𝑉𝐴𝐻

 (volatility of acceleration above mean speed) of un-signalized 
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intersections as compared to signalized intersections can be due to uninterrupted traffic of un-

signalized intersections. 

 

In order to avoid omitted variable bias in modeling (Mannering and Bhat, 2014), data on other 

variables such as five-year average AADT (major and minor approach), speed limits (major and 

minor approaches), and number of approaches were collected. Regarding the number of 

approaches, 40% of all intersections, 62.2% of signalized intersections, and 22% of un-signalized 

intersections are four-legged intersections (Table 3.1). In terms of exposure on major and minor 

roads, signalized intersections have higher (on average) AADT than un-signalized intersections 

(22,747 vs. 19,171 for major roads and 9,994 vs. 8,893 for minor roads). Regarding number of 

lanes, number of through and left turns for signalized intersection are considerably higher as 

compared to un-signalized intersections.  

 

3.5.2 Modeling Results 

For examining the correlations between crash frequency and location-based volatility (as 

measured by 𝐶𝑉s), count data models are estimated given the count nature of crash frequency. 

Separate count data regression models are estimated for all intersections, signalized intersections 

and un-signalized intersections. Specifically, fixed-parameter Poisson regressions are estimated 

for total crash frequency as a function of location based volatility, major and minor road AADT, 

major and minor road speed limits, and total number of through lanes. It should be noted that the 

descriptive statistics for crash frequencies in Table 3.1 apparently reveal the existence of over-

dispersion in the data where Negative Binomial model should be preferred over Poisson model 

(Washington et al., 2010).Thus, statistical tests are conducted to confirm the existence of over-

dispersion (Greene, 2003). As explained in methodology section, Lagrange Multiplier tests were 
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conducted for all three Poisson models. By using Equation 3.3, the Lagrange Multiplier (LM) 

values were 0.05, 0.031, and 0.15 for all intersections, signalized intersections, and un-signalized 

intersections respectively. The LM values are much smaller than critical Chi-square value of 

3.84 for one degree of freedom at 95% confidence level. Thus, the null hypothesis that Poisson 

regressions are more appropriate is failed to reject, and it would be more appropriate to use 

Poisson regressions (Washington et al., 2010).  

 

Due to the likely presence of unobserved heterogeneity in crash data (Anastasopoulos and 

Mannering, 2009) which may arise due to several unobserved factors, random-parameter Poisson 

models are also estimated. Fixed parameter models are estimated with standard maximum 

likelihood whereas random parameter models are estimated through simulated maximum 

likelihood with 200 Halton draws used for random-held parameters (Anastasopoulos and 

Mannering, 2009). Regarding functional form of random-parameters, log-normal, Weibull, 

uniform, and triangular distributions are tested with normally distributed random parameters 

giving the best fit and shown in this study. The results obtained from fixed and random 

parameter Poisson model are presented in Table 3.2. Marginal effects are also provided for the 

random parameter models that translate unit change in crash frequency with unit change in 

explanatory variable. Compared to fixed-parameter models, random-parameter models resulted 

in better fit as of improved log-likelihood at convergence and McFadden’s 𝜌2 (Table 3.2) 

(Washington et al., 2010). While this study does not focus on methodological approaches for 

modeling intersection crash data, the predicted vs. actual values of crashes (Figure 3.2) are 

plotted and reveal statistical superiority of random parameter models in fitting the data at hand. 
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Table 3.2 Modeling results of fixed- and random-parameter Poisson regressions 

Variables 

Signalized and Un-signalized Signalized Intersections Un-signalized Intersections 

Fixed Par. Random Par. Fixed Par. Random Par. Fixed Par. Random Par. 

 
t-stat  t-stat ME  t-stat  

t-

stat 
ME  

t-

stat 
 

t-

stat 
ME 

Constant -7.752 -6.6 -7.786 -7.237 --- -7.21 -4.97 -7.35 -6.95 --- -10 -3.574 -9.61 -3.23 --- 

Standard deviation* --- --- --- --- --- --- --- --- --- --- --- --- 0.488 6.155 --- 

𝐶𝑉𝐴𝐿
 0.006 4.152 0.004 2.902 0.025 0.009 3.434 0.01 5.34 0.125 -0.014 -2.831 -0.016 -2.91 -0.035 

Standard deviation --- --- --- --- --- --- --- 0.0002 1.99 --- --- --- --- --- --- 

𝐶𝑉𝐴𝐻
 -0.003 -0.776 -0.007 -1.983 -0.038 0.009 1.453 0.01 1.95 0.118 0.005 0.683 0.004 1.28 0.01 

Standard deviation --- --- 0.005 11.856 --- --- --- --- --- --- --- --- --- --- --- 

𝐶𝑉𝐷𝐿
 0.002 1.243 0.005 2.827 0.027 -0.003 -1.541 -0.004 -2.22 -0.057 0.015 2.698 0.0153 3.186 0.036 

Standard deviation --- --- --- --- --- --- --- 0.0009 4.36 --- --- --- --- --- --- 

𝐶𝑉𝐷𝐻
 0.02 6.449 0.021 6.33 0.11 0.008 1.872 0.007 1.98 0.089 -0.0007 -0.09 0.0001 0.05 0.0004 

Standard deviation --- --- 0.0007 2.182 --- --- --- --- --- --- --- --- --- --- --- 

Ln (Major Road AADT) 0.547 4.899 0.527 5.322 2.694 0.55 3.716 0.565 5.56 6.575 0.866 4.801 0.757 4.106 1.823 

Standard deviation --- --- 0.011 3.376 --- --- --- --- --- --- --- --- 0.488 6.155 --- 

Ln (Minor Road AADT) 0.123 1.656 0.15 1.97 0.767 0.191 2.083 0.207 2.03 2.413 0.231 1.004 0.292 1.25 0.704 

Standard deviation --- --- 0.006 2.152 --- --- --- --- --- --- --- --- --- --- --- 

Speed limit major road -0.009 -1.736 -0.014 -2.497 -0.073 0.004 0.576 0.008 1.22 0.097 --- --- --- --- --- 

Speed limit minor road --- --- --- --- --- -0.016 -1.444 -0.023 -1.62 -0.271 --- --- --- --- --- 

Total through lanes 0.61 1.733 0.107 3.223 0.547 --- --- --- --- --- --- --- --- --- --- 

Notes: ME: Average Marginal Effects from Random Parameter Model.  𝐶𝑉𝐴𝐿
: Coefficient of variation of acceleration below mean speed of intersection; 𝐶𝑉𝐴𝐻

: 

Coefficient of variation of acceleration above mean speed of intersection; 𝐶𝑉𝐷𝐿
:  Coefficient of variation of deceleration below mean speed of intersection; 𝐶𝑉𝐷𝐻

: 

Coefficient of variation of deceleration above mean speed of intersection; AADT: Annual Average Daily Traffic; *Standard deviation of normally distributed 

random parameters. 
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Table 3.2 Modeling results of fixed- and random-parameter Poisson regressions (Continued) 

 Signalized and Un-signalized Signalized Intersections Un-signalized Intersections 

 Fixed Par. Random Par. Fixed Par. Random Par. Fixed Par. Random Par. 

Summary Statistics       

Log-lik. at Zero L(0) -578.31 -578.31 -226.73 -226.73 -158.18 -158.18 

Log-lik. at 

Convergence L( ) 
-336.72 -305.02 -159.43 -154.91 -138.26 -130.44 

McFadden 2 0.417 0.831 0.31 0.893 0.125 0.59 

Sample Size (N) 116 53 63 
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Figure 3.2 Mean-expected over actual number of crashes for fixed and random-parameter 

Poisson models (Green: fixed parameter models; Red: random parameter models) 
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3.6 DISCUSSION 

 

Coming to the fixed-parameter estimation results for all intersections (Table 3.2), the results 

provide evidence that 𝐶𝑉𝐴𝐿
,𝐶𝑉𝐷𝐿

, and 𝐶𝑉𝐷𝐻
 are positively associated (statistically significant at 

95% confidence level) with crash frequency. However, 𝐶𝑉𝐴𝐻
 is negatively associated with crash 

frequency (at 90% confidence interval). It can be concluded, overall, volatility of deceleration 

regardless of speed range is positively associated with crash frequency. However, when it comes 

to acceleration, volatility at lower speed is more a significant factor as compared to volatility at 

higher speeds. 

 

At signalized intersections, the association between 𝐶𝑉𝐴𝐿
, 𝐶𝑉𝐴𝐻

 and 𝐶𝑉𝐷𝐻
 and crash frequency is 

also positive and statistically significant. 𝐶𝑉𝐷𝐿
 for signalized intersection; however, it is 

negatively correlated with crash frequency.  

 

Referring to marginal effects for random parameter model in Table 3.2, on average one-percent 

increase in 𝐶𝑉𝐷𝐻
  is associated with 0.11 increase in crash frequency for all intersections and 

0.089 increase in crash frequency for signalized intersections. These findings have implications 

for proactive intersection-related safety strategies. In addition, it is interesting to note the 

significantly higher marginal effect of acceleration 𝐶𝑉s for signalized intersections, implying that 

higher variability in acceleration at signalized intersections may potentially result in more 

crashes. Given that signalized intersections are typically observed to have more crashes (Abdel-

Aty and Keller, 2005), proactive intersection-customized strategies can be designed. For 

instance, proactive warnings and alerts can be generated about potential hazards at specific 

intersections and transmitted to drivers via connected vehicle technologies such as road-side 
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equipment. This can in turn increase drivers’ situational and safety awareness, and help drivers in 

undertaking safer driving behaviors.  

 

Regarding un-signalized intersections, as shown in Table 3.2, 𝐶𝑉𝐴𝐿
 and 𝐶𝑉𝐷𝐿

 are statistically 

significant. We found negative association between 𝐶𝑉𝐴𝐿
 and crash frequency. This finding is 

seemingly counter intuitive and needs further investigation. Possibly, for un-signalized 

intersection, due to their uninterrupted traffic in major approach (78% of them are T-

intersections), separation of 3-leg and 4-leg intersection might shed more clarification in future 

studies. However, the finding that 𝐶𝑉𝐷𝐿
 (Coefficient of variation of deceleration below mean 

speed of intersection) is positively associated with crash frequency is intuitive i.e. larger the 

volatility/variation in decelerations at low speeds, the more crash frequency at a particular 

intersection. 

 

The estimation results quantify associations between major and minor road AADT and crash 

frequency. Referring to marginal effects from the random-parameter model, one-log unit 

increase in major road AADT is associated with 2.69, 6.57, and 1.82-unit increase in crash 

frequency for all intersections, signalized intersections, and un-signalized intersections, 

respectively. Minor road AADT is statistically significant in the random-parameter model for 

signalized intersections, but the relationships are not statistically significant for un-signalized 

intersections (Table 3.2). Speed limit on major roads is negatively associated with crash 

frequency for all intersections. These findings are consistent with past studies on this topic (Ye et 

al., 2009, Abdel-Aty and Haleem, 2011). Notably, the total number of through lanes is positively 
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associated with crash frequency. From Table 3.2, it can be observed that one added through lane 

is correlated with 0.547 more crashes.  

 

Figure 3.3 illustrates how the study results can assist in proactive intersection safety 

management. The black, green and red circles in the figure are scaled crashes, volatility of 

acceleration, and volatility of deceleration at lower speeds, respectively. The intersection in the 

center is a known hotspot because it has more crashes and proportionately high levels of 

volatility. However, two other intersections shown in dashed ellipses have relatively low crashes 

but high volatility levels (𝐶𝑉𝐴𝐿
, 𝐶𝑉𝐷𝐿

). In such locations (hotspots), although crash frequencies 

are low, drivers show proportionately more volatile driving behavior. In other words, at such 

locations crashes may be waiting to happen. Proactive countermeasures can be taken in those 

locations depending on the real cause of driving volatility, e.g., by studying speed limits, signal 

timing, geometric design, dilemma zone, and lines of sight. 

 

 

Figure 3.3 Known hotspots and spots where crashes are waiting to happen. 
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3.7 LIMITATIONS  

 

The study captures variability in longitudinal acceleration/deceleration as a measure of 

intersection-specific volatility, which only partially capture the true volatility exhibited by 

drivers. As explained in the methodology section, due to data limitations, the study could not 

incorporate lateral acceleration/deceleration in estimation of intersection-specific volatility. 

While the results from this study provide evidence between crash frequency and intersection-

specific volatility, more robust measures such as vehicular jerk and combination of longitudinal 

and lateral accelerations can be used in future studies for quantifying volatility at specific 

intersections. Also, the results and conclusions of this study are dependent on the sample-size. 

Another limitation is that one month data were used to explain 5-year average crash. While the 

current sample size may not be enough to draw robust conclusions, the authors have used all 

available data for 116 intersections.  

 

3.8 CONCLUSIONS 

 

This study contributes by developing and demonstrating a proactive intersection safety 

methodology using real-world large-scale connected vehicle data. The study quantifies volatility 

in instantaneous driving decisions using intersection-specific Basic Safety Messages (BSMs) and 

its relationship with observed crash frequencies, while controlling for other variables. Such a 

method can complement the state-of-the-art in evaluating intersection safety, which is largely 

reactive, based on observed and expected crash frequencies. The emerging data from Connected 

and Automated (CAVs) are increasingly becoming available, which can help us understand the 

detailed nature of instantaneous driving behaviors prior to the occurrence of unsafe outcomes 
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such as crashes/incidents. This study proposes the concept of location-based volatility that 

captures the extent of variations in instantaneous driving decisions.  

 

A unique database that provides a more complete picture of operations and safety performance 

was created by combining more than 65 million Basic Safety Messages transmitted between 

connected vehicles and roadside units at 116 intersections in Ann Arbor, Michigan, with crash 

and inventory data. The geo-coded raw BSMs were allocated to each intersection and the 

connected vehicles trajectories extracted from raw BSMs were plotted, revealing reasonable data 

precision and coverage. A simple and standardized measure of dispersion called Coefficient of 

Variation (𝐶𝑉) (also known as the ratio of relative standard deviation) was used to quantify the 

fluctuations in longitudinal acceleration and/or decelerations at specific intersections. Five-year 

crash frequencies, AADT, speed limits, and number of approaches for all intersections are 

extracted and linked with location-based volatilities. Significant efforts went into data 

processing, collection, and linkage.  

 

Rigorous fixed and random parameter Poisson regression models are estimated that allow 

consideration of unobserved heterogeneity in crash data. The modeling results reveal that most of 

computed 𝐶𝑉s (as measures of volatilities) are positively associated with crash frequency. The 

study has implications for proactive intersection safety management. Importantly, the magnitude 

of association between location-based volatility and crash frequency is significantly higher for 

signalized intersections, implying that higher variability in instantaneous driving decisions at 

signalized intersections may potentially result in more crashes. This finding is important in the 

sense that if many drivers behave in a volatile manner at a specific intersection (exhibit higher 
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variability in longitudinal accelerations), then such intersections can be identified before 

accidents happen. Of course, the reasons for volatile behaviors may be related to intersection and 

environmental conditions, vehicles’ and drivers’ conditions. Given that signalized intersections 

are typically observed to have more crashes (Abdel-Aty and Keller, 2005), intersection-

customized strategies can be designed to improve safety. Proactive warnings and alerts can be 

generated about potential hazards at specific intersections and transmitted to drivers via 

connected vehicle technologies such as road-side equipment; these can in turn increase drivers’ 

situational and safety awareness, and help them pursue safer driving at dangerous intersections. 
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CHAPTER 4 HOW IS DRIVING VOLATILITY RELATED TO INTERSECTION 

SAFETY? A BAYESIAN HETEROGENEITY-BASED ANALYSIS OF 

INSTRUMENTED VEHICLES DATA 
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This chapter presents modified versions of two research papers by Behram Wali, Asad J. 

Khattak, Hamparsum Bozdogan, and Mohsen Kamrani. These papers include:  

Journal Paper - “How is Driving Volatility Related to Intersection Safety? A Bayesian 

Heterogeneity-Based Analysis of Instrumented Vehicles Data.” Wali. B., Khattak, A.J., 

Bozdogan, H, Kamrani, M. Accepted for publication in Transportation Research Part C: 

Emerging Technologies.  

Peer-Reviewed Conference Paper – “How is Driving Volatility Related to Intersection Safety in 

a Connected Vehicles Environment?” Wali, B., Khattak, A. J., Bozdogan, H. (2018). 

Presented at the 97th Annual Meeting of the Transportation Research Board, 

Washington DC, USA. TRB PAPER # 18-00058.  

 

ABSTRACT 

 

Driving behavior in general is considered a leading cause of intersection related traffic crashes. 

However, due to unavailability of real-world driving data, intersection safety performance 

evaluations are largely reactive where state-of-the-art methods are applied to analyze historical 

crash data. In this regard, the emerging connected vehicles technology provides a promising 

opportunity for investigating intersection safety more from a proactive perspective. Driving 

volatility captures the extent of variations in instantaneous driving decisions when a vehicle is 

being driven. This study develops a fundamental understanding of microscopic driving volatility 

and how it relates to unsafe outcomes at intersections. Using high resolution driving data from a 

real-world connected vehicle testbed, Safety Pilot Model Deployment, in Ann Arbor, Michigan, 

a methodology is presented to quantify driving volatility at 116 intersections by analyzing more 

than 230 million real-world Basic Safety Messages. For proactive intersection safety evaluation, 
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the large-scale connected vehicle data is then linked to detailed intersection data containing 

crashes, traffic exposure, and other geometric features. By using vehicular speed, 

acceleration/deceleration, and vehicular jerk based eight different volatility measures, descriptive 

analysis is performed to spot differences between driving volatility at signalized and un-

signalized intersections. Then, in-depth statistical analysis is conducted separately for all 

intersections (signalized and un-signalized) and signalized intersections only. Importantly, not all 

factors that may influence crash frequency can be observed in the data. If unobserved factors 

could be included in a model, then correlations between driving volatility and crash frequency 

can change, e.g., the relationship can become statistically insignificant. Given the important 

methodological concerns of unobserved heterogeneity and potential omitted variable bias, 

hierarchical fixed- and random-parameter Poisson and Poisson log-normal models are estimated. 

Full Bayesian estimation via Markov Chain Monte Carlo (MCMC) based Gibbs sampling is 

performed, providing more efficient results. For all intersections, after controlling for traffic 

exposure, geometrics, and unobserved factors, a one-percent increase in intersection-level 

volatility calculated through two standard deviations threshold for acceleration/deceleration, 

passing level volatility captured through coefficient of variation of speed, and mean absolute 

deviance of vehicular jerk results in a 1.25%, 0.25%, and 0.35% increase in crash frequencies 

respectively. However, the relationships between intersection-specific volatility and crash 

frequencies are different for signalized intersections. Several of the exogenous factors are found 

to be normally distributed random parameters, suggesting that the effects of such variables vary 

across different intersections. The implications of the findings for proactive safety management 

are discussed. 
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4.1 INTRODUCTION 

 

Intersections are believed to be the most dangerous locations on roadways potentially due to the 

complex traffic movements that result in large number of vehicular conflicts, and the diverse set 

of operational and geometric features associated with them (Zheng and Liu, 2017, Persaud and 

Nguyen, 1998, Hashimoto et al., 2016, Rakha and Kamalanathsharma, 2011, Rakha et al., 2007). 

As such, improving roadway intersection safety is of high interest to the profession. Through 

application of diverse set of advanced empirical methods, researchers since decades have come 

up with intersection targeted safety performance models (Quddus et al., 2001, Muralidharan et 

al., 2016, El-Basyouny and Sayed, 2013). Typically, intersection safety performance evaluations 

are largely reactive, where state-of-the-art methods are applied to link historical crash data with 

crash specific, operational, and geometric related features, to name a few (Lord and Mannering, 

2010). Given information about the afore-mentioned characteristics specific to each intersection, 

crashes can then be predicted based on which appropriate safety treatments are developed and 

recommended (Braitman et al., 2007, Tay and Rifaat, 2007). 

 

Driving behavior and/or human factors in general are considered a leading cause of intersection 

traffic crashes (Akamatsu et al., 2003, Zimmerman and Bonneson, 2004). Importantly, volatility 

in instantaneous driving decisions can be a leading indicator for understanding the occurrence of 

unsafe outcomes such as incidents or crashes (Wali et al., 2018d, Khattak and Wali, 2017). The 

concept of driving volatility captures the extent of variations in instantaneous driving decisions 

(such as variations in speed) when a vehicle is being driven at a specific roadway location 

(Khattak and Wali, 2017). Such information can help in identification of intersection locations 

where crashes may not have happened yet but are perhaps waiting to happen (Schneider et al., 
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2004). In this regard, connected vehicles technology provides a promising avenue for 

investigating intersection safety, more from a proactive perspective. With monitoring, 

processing, and adequate integration of connected vehicle data with historical crash data, the 

generated large-scale empirical data from connected vehicle systems have significant potential in 

facilitating deeper understanding of instantaneous driving decisions, and to link microscopic 

driving decisions to unsafe safety outcomes. The Safety Pilot Model Deployment (SPMD) offers 

detailed instantaneous driving data generated by connected vehicles in real-world environment. 

This pilot, sponsored by US-DOT, is currently on-going in Ann Arbor, Michigan, and intends to 

display vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication systems in 

real-life environment. Of specific interest are the Basic Safety Messages (BSMs) that provide 

high-frequency (usually ten times per second) information packets containing detailed data on 

vehicle’s motion, location, driving context, and instantaneous driving decisions (e.g., speed).  

 

This study focuses on extending the concept of driving volatility to specific intersections, thus 

termed as Intersection-Based Volatility, by using real-world large-scale connected vehicle data. 

Given that navigating through an intersection is a complex task, we posit that the concept of 

intersection-based volatility can provide critical insights regarding the correlations between 

driving behaviors (its extent and variation) at a specific intersection and key safety outcomes. 

Using large-scale real world microscopic driving data, a methodology for conceptualizing and 

quantifying driving volatility at individual intersections is presented. Then, for proactive 

intersection safety management, driving volatilities at specific intersections are linked to detailed 

intersection data containing crashes, traffic exposure, and other geometric features. From a 

methodological perspective, appropriate count data models are developed within Full Bayesian 
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framework, and which accounts for the important issues of omitted variable bias and unobserved 

heterogeneity (discussed later in detail). 

 

4.2 LITERATURE REVIEW 

 

A careful review of literature reflects the prompt response by government agencies, automotive 

industry and academia to such disruptive yet beneficial connected and automated vehicles 

innovation. This innovation has an unquestionable potential to significantly improve the current 

transportation systems (Ghiasi et al., 2017a, Wali et al., 2018d, Liu and Khattak, 2016, Khattak 

and Wali, 2017, Zeng et al., 2017), with some recent studies showing benefits in form of 

comprehensive crash savings, fuel efficiency, parking benefits, and travel time reduction to 

approach $4000 per year for each CAV operated on road (Fagnant and Kockelman, 2015). From 

a research perspective, a wide range of reliable transportation connectivity solutions are explored 

to address real world safety challenges, mobility issues, and environmental challenges (Khattak 

and Wali, 2017, Zulkefli et al., 2017, Zulkefli et al., 2014, Liu and Khattak, 2016a, Wali et al., 

2018e, Letter and Elefteriadou, 2017). 

 

Connected vehicle solutions can potentially help in addressing transportation challenges by 

primarily targeting the human factor involved in surface transportation. From safety perspective, 

driving behavior and/or human factors in general are considered a leading cause of traffic crashes 

(Akamatsu et al., 2003, Zimmerman and Bonneson, 2004, Kamrani et al., 2014, Arvin et al., 

2017). Since decades, by analyzing traditional crash, roadway, and geometric data, researchers 

have developed safety performance models for designing effective safety countermeasures. 

However, the intersection safety countermeasures in particular and road safety countermeasures 
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in general are typically reactive in nature, i.e., roadway or intersection geometric improvements 

are developed once crashes happen, and are not specifically designed based on the driver’s 

behavior which in turn is a major cause of unsafe outcomes at intersections. This largely can be 

attributed to the intrinsic limitations of traditional crash data which do not provide detailed 

information about drivers’ performance, and typically surrogate measures such as speed limits or 

controlled simulation experiments are used to evaluate drivers’ performance (Aarts and Van 

Schagen, 2006, Bao and Boyle, 2008, Haglund and Åberg, 2000, Shah et al., 2018, Wali et al., 

2017a, Wali et al., 2017b). On the other hand, the rapid technological sensor and driving 

surveillance advancements in recent years have enabled collection of huge amounts of 

spatiotemporal data about vehicle and human movement (Ghasemzadeh et al., 2018). For 

example, by using Global Positioning System (GPS) based taxi data, Pei et al. (2012) 

investigated relationships between traveling speeds (as a measure of driving behavior) and safety 

outcomes for road segments in Hong Kong (Pei et al., 2012). Likewise, for proactive safety 

management, Quddus (2013) investigated relationship between traveling speeds and unsafe 

outcomes on motorways (freeways) by using segment-based 1 hour average speed data (Quddus, 

2013).  

 

As opposed to traditional GPS and loop-detector based data, the state-of-the-art has further 

advanced where human movements can be recorded by recent innovations that enable realization 

of V2V and V2I communication such as DSRC, Wi-Fi, Bluetooth, and cellular networks (Cheng 

et al., 2007, Chou et al., 2009, Sugiura and Dermawan, 2005, Kamrani et al., 2018c). The Safety 

Pilot Model Deployment (SPMD) provides an exciting opportunity by using state-of-the-art 

technologies to generate Basic Safety Messages (BSMs) that describe vehicle’s instantaneous 
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position, vehicle maneuvering, and instantaneous driving contexts (Henclewood, 2014, Khattak 

and Wali, 2017). Important in this respect is the concept of “driving volatility” which is a 

measure of driving performance in connected vehicles network (Khattak et al., 2015, Khattak 

and Wali, 2017, Wali et al., 2018e, Wali et al., 2018d), and captures the extent of variations in 

driving, especially hard accelerations/braking and jerky maneuvers (Khattak et al., 2015, Khattak 

and Wali, 2017, Wali et al., 2018e, Wali et al., 2018d, Wang et al., 2015). The basic idea is to 

monitor instantaneous driving decisions (threshold based vehicular jerk, 

accelerations/decelerations), identify abnormal and extreme behaviors, and to generate proactive 

warnings in case unsafe driving maneuver is anticipated (Wang et al., 2015, Khattak et al., 2015, 

Khattak and Wali, 2017, Wali et al., 2018d).  

 

Collectively, the potential of “trip-level” driving volatility in developing advanced traveler 

information systems, driving feedback devices, and alternative fuel vehicle purchase frameworks 

for consumers was documented (Khattak and Wali, 2017, Wang et al., 2015, Liu et al., 2017, 

Kamrani et al., 2018a). However, several gaps exist. First, all the afore-mentioned studies 

focused on trip-level driving volatility, i.e., driving volatility across a specific trip was 

conceptualized. Second, the earlier studies did not link trip-level volatility to unsafe outcomes 

such as traffic crashes. Third, from a methodological perspective, unobserved heterogeneity and 

omitted variables bias has not been dealt with adequately in the literature (discussed later in 

detail). The present study focuses on these issues and extending the concept of trip-level 

volatility to specific intersections, termed intersection-specific volatility. Specifically, a 

methodology is developed to quantify microscopic driving volatility in real-world high 

frequency microscopic driving data. The real-world driving volatility indices are then linked with 
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key safety outcomes to examine the relationships between intersection-specific volatility and 

unsafe outcomes (such as crashes). We believe that expanding the concept of driving volatility in 

connected vehicles environment to specific locations (i.e., intersections) has significant potential 

in identifying hazardous locations and which can have important implications for proactive 

safety management.  

 

4.2.1 Research Objective and Contribution 

The objectives of this study are:  

1. To develop a methodology for quantifying driving volatility (magnitude and variations in 

instantaneous driving decisions) in CAV based Basic Safety Messages.  

2. To understand correlations between driving volatility and traffic crashes at specific 

intersections.  

3. To fully account for unobserved heterogeneity by developing full Bayesian hierarchical 

random parameter Poisson and Poisson log-normal models.  

To achieve these objectives, significant efforts went into processing large-scale real-world 

connected vehicles microscopic driving data for generating intersection-specific driving 

volatility indices. In particular, more than 230 million Basic Safety Messages are analyzed to 

examine intersection-specific driving volatility. The volatility indices are then linked with 

intersection crash, exposure, and geometrics data that is collected for a sample of intersections in 

Ann Arbor, Michigan. As a key focus, the study aims at analyzing correlation between driving 

volatility and intersection crashes. Once the driving volatility indices are estimated, descriptive 

analysis is performed to spot differences between driving volatility at signalized and un-

signalized intersections. The volatility indices for intersections are then visually compared to 
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historical crashes and meaningful patterns are spotted. Next, as signalized intersections often 

experience higher crash frequencies, in-depth statistical analysis is performed separately for all 

intersections (signalized plus un-signalized) and signalized intersections only. From a 

technological and data analytics standpoint, this study contributes by making sense of large-scale 

seemingly unstructured driving data collected in a connected vehicles environment. The raw data 

generated by sensors is of limited use to drivers when presented in raw form. Emerging large-

scale data from connected vehicles, sensors, and telematics have recently become available, 

however, the methods to extract useful information from such data are not well established. 

Thus, a methodology is proposed in the current study that extracts patterns from the microscopic 

driving data that may be relevant to safety performance of intersections (discussed later in 

detail).  

 

From a methodological standpoint, the interactions between driving behavior and traffic crashes 

are very complex involving driver responses to different stimuli, as well as interactions between 

driver, vehicle, roadway, and traffic factors. Given that the integrated connected vehicles and 

inventory data is assembled manually; it is obvious not all factors that may influence crash 

frequency are observed. In presence of such unobserved factors, it may happen that any 

correlation that is established between driving volatility and crash frequency is not real and in 

fact is an outgrowth of some other factors that are not observed in the data. If this happens, the 

traditional statistical models will have serious specification issues, and can lead to inconsistent, 

erroneous or unreliable, and biased correlations between driving volatility and crash frequency 

(Mannering et al., 2016). These methodological concerns are generally referred to unobserved 
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heterogeneity and omitted variable bias in the literature31 (Mannering and Bhat, 2014). Thus, 

from a methodological perspective, for relating connected vehicles based driving volatility with 

unsafe safety outcomes at intersections, the study contributes by developing Full Bayesian fixed- 

and hierarchical random-parameter count data models via Markov Chain Monte Carlo (MCMC) 

based Gibbs updates. Specifically, hierarchical fixed- and random-parameter Poisson regression 

models are estimated in a Full Bayesian setup. While random-parameter Poisson regression 

models can capture the over-dispersion in crash data (Washington et al., 2010), recent studies 

have also shown that any variance/over-dispersion in crash data left behind in random-parameter 

Poisson model can be effectively captured with random parameter Poisson log-normal 

distributions (El-Basyouny and Sayed, 2009a). Thus, to better capture unobserved heterogeneity 

and to reduce its negative implications, we also test Poisson log-normal regression models in 

Full Bayesian context. The motivation behind using Full Bayesian estimation methods is 

discussed later. 

 

 

                                                 
31 Statistically, leaving out one or more important explanatory factors can lead to omitted-variable bias (Mustard, 

2003). One of the implication of omitted-variable bias is that the estimated model will tend to over- or underestimate 

the effects of observed variables. Alternatively, this suggests that in presence of such unobserved factors, it may 

happen that any correlation that is established between driving volatility and crash frequency is not real and in fact is 

an outgrowth of some other factors that are not observed in the data. These omitted factors (and which constitute 

heterogeneity due to unobserved factors) can lead to variation in the effects of observed explanatory factors on crash 

frequency (Mannering et al., 2016). To account for these issues, we employ a Bayesian version of random parameter 

modeling technique that can guard us from the severe implications of omitting important variables from the model 

specification. However, we emphasize that the statistical methods used in this paper do not “explicitly” address 

omitted variable bias. In our case, the potential omitted explanatory factors that are likely to be associated with crash 

frequency become a portion of the unobserved heterogeneity. As such, the statistical methods used in this study that 

account for unobserved heterogeneity can mitigate the adverse impacts of omitted variables bias (Mannering et al., 

2016). However, as noted in Mannering et al. (2016), we acknowledge that the parameter estimates obtained from 

the Bayesian heterogeneity-based models may not track the unobserved heterogeneity (due to omitted variables) as 

good as if we could have included all the important omitted variables in the model specification (Mannering et al., 

2016). 
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4.3 METHODOLOGY 

 

4.3.1 Conceptual Framework 

To understand driving volatility at intersections, detailed microscopic data on instantaneous 

driving decisions are needed. In this regard, the currently on-going connected vehicles Safety 

Pilot Model Deployment program provides relevant data. However, the generated data regarding 

instantaneous driving decisions is high-resolution and highly microscopic in nature, and is of 

little use if presented to drivers in raw form. Thus, a methodology needs to be developed first by 

which we can meaningfully process and combine microscopic driving data and use it for 

generation of volatility indices at aggregate level, e.g., intersection-level. The concept of driving 

volatility captures the extent of variations in instantaneous driving decisions (such as variations 

in speed, acceleration, or vehicular jerk) when a vehicle is being driven at a specific roadway 

location (Kamrani et al., 2017, Khattak and Wali, 2017, Wali et al., 2018e). Such volatility 

indices can represent, on-average, the driving performance of majority of drivers traversing 

through a specific intersection. For intersection safety management, such information is crucial 

as it can highlight intersection locations where behaviors of drivers may differ, compared to their 

behaviors at other intersection locations. With real-world driving data based volatility indices, 

proactive safety countermeasures can be planned for hazardous intersection locations. Another 

dimension to this is to investigate potential correlations between intersection-specific driving 

volatility and historical crashes. We posit a positive correlation between variations in 

instantaneous driving decisions and crash frequency at a specific intersection. Any correlation, if 

exists, can shed light on microscopic driving decisions, and how such decisions influence 

intersection safety.   
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4.3.2 Intersection Based Volatility 

For development of volatility indices, different instantaneous driving measures may be used such 

as vehicle speeds, accelerations/decelerations, vehicular jerk, and/or steering angles (Kamrani et 

al., 2017, Liu and Khattak, 2016b, Quddus, 2013a, Wali et al., 2018e). For instance, Liu and 

Khattak (Liu and Khattak, 2016) quantified trip-level driving volatility by using 

acceleration/deceleration based thresholds in connected vehicle environment. Likewise, Khattak 

and Wali (2017) used acceleration/deceleration based profiles to examine volatility in driving 

regimes in a connected vehicles environment (Khattak and Wali, 2017). Vehicular jerk is also 

recently introduced for conceptualizing instantaneous driving volatility in trips (Wang et al., 

2015). Compared to acceleration/deceleration based volatility measures, vehicular jerk can better 

capture the variations in driving behavior (Wang et al., 2015). Likewise, Kamrani et al. (2017) 

used acceleration/deceleration based measures to quantify driving volatility at intersections 

(Kamrani et al., 2017).  

 

Keeping in view the previous work, we propose several microscopic speed, 

acceleration/deceleration, and vehicular jerk based measures derived from high-resolution 

driving data to develop intersection-specific volatility indices. Given that acceleration 

capabilities vary across different speeds (low and high), the acceleration/deceleration based 

volatility indices used are made sensitive to traveling speeds. The present study differs from the 

study by Kamrani et al. (2017) both methodologically and conceptually (Kamrani et al., 2017). 

From a methodological perspective, this study employs Full Bayesian (FB) methodology 

(compared to empirical Bayes or maximum likelihood estimation) for proactive safety 

evaluation. Compared to other methods, FB estimation technique builds upon using prior 
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distributions which has many advantages such as accounting for temporal and spatial variations, 

the flexibility of allowing estimation of models with smaller sample sizes, allowing models with 

several hierarchies, and more detailed insights such as parameter distributions and credible 

intervals (Dong et al., 2014). To fully account for unobserved heterogeneity, we employ and test 

a broader set of appropriate count data models in the FB setup.  From a conceptual stand-point, 

Kamrani et al. (2017) used accelerations/decelerations as a measure of driving volatility, whereas 

instantaneous driving speed, acceleration/deceleration, and vehicular jerk based measures are 

used in the current study for quantifying driving volatility. Compared to other measures, speed 

profiles are also used for calculation of volatility because the relationship between safety 

outcomes and speed is more direct, i.e., speed (its magnitude and variation) is widely believed to 

directly influence safety outcomes (Aarts and Van Schagen, 2006, Quddus, 2013, Fildes et al., 

1991). While simultaneously accounting for magnitude and heterogeneity (variance) in 

instantaneous driving decisions, we introduce several statistical measures to capture 

heterogeneity in instantaneous driving decisions at specific locations (discussed later in detail). 

 

4.3.3 Calculation of Volatility 

The data provides geo-coded information about vehicle position and motion characteristics such 

as instantaneous speeds and accelerations. Thus, the connected vehicle data from the SPMD were 

processed and cleaned. Next, we identified 116 intersections in Ann Arbor, Michigan, the details 

of which are discussed later. Figure 4.1 (upper panel) illustrates the sampled intersections in Ann 

Arbor area. To process and assign geocoded instantaneous trajectory data to individual 

intersections, a threshold of 150 feet was established from the center of each intersection and any 

geocoded BSM packet within 150 feet from the center of specific intersection was assigned to 
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that intersection32. For each intersection, polygons were drawn based on the 150 feet threshold 

from the center of intersection to all the intersection approaches. These geocoded polygons are 

then used to appropriately filter the Basic Safety Message data applicable to each of the sampled 

intersections. As such, a total of more than 230 million Basic Safety Messages were processed 

and linked to 116 intersections in Ann Arbor, Michigan. The bottom panel of Figure 4.1 

illustrates the example for one of the signalized intersection. For each of the 116 intersections, 

the relevant microscopic driving behavior measures (speed, acceleration/deceleration, and 

vehicular jerk) are linked to particular intersection and volatility indices calculated. Note that the 

microscopic speed profiles include the zero speed data, i.e., when vehicle is stopped at an 

intersection. If this “mean speed” at signalized intersections includes the speed data when the 

vehicle is stopped, it can be expected that the driving volatility definition will be highly different 

between signalized and un-signalized intersections33. As such, we removed the zero speeds from 

the BSM data. While the magnitudes of driving volatilities calculated using data including zeros 

and excluding zeros varied, our overall conclusion regarding the extent of driving volatility at 

signalized and un-signalized intersections (i.e., greater volatility on signalized intersections 

compared to un-signalized intersections) remained the same (discussed later in detail).  

 

The methodology used for quantification of driving volatility is explained next.  

 

                                                 
32 The crash and road inventory data used in this study are manually downloaded from the Metropolitan Planning 

Organization (MPO) in Ann Arbor, Michigan (see http://semcog.org/Data-and-Maps.) Note that the 150 feet threshold 

(from the center of intersection) for linking Basic Safety Messages with intersections is employed because the 

intersection crash data are allocated to individual intersections based on a 150 feet threshold from the center of the 

intersection. Further details can be found at http://semcog.org/Data-and-Maps. 
33 We thank the anonymous reviewer for bringing up this conceptual concern to our attention. 

http://semcog.org/Data-and-Maps/Map-Gallery
http://semcog.org/Data-and-Maps/Map-Gallery
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Figure 4.1 Sampled intersections in Ann Arbor area and method for calculating intersection 

specific volatilities. Notes: Black dots represent individual intersections in Ann Arbor, 

Michigan 
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From a data analytic standpoint, intersection-specific driving volatility indices are calculated 

from BSM data at two levels using: 

 

1. Aggregate intersection level data 

2. Trip level data.  

 

Figure 4.2 illustrates the two levels used in the analysis. In particular, the driving volatility 

indices calculated at the first level (aggregate intersection level) are derived from considering the 

intersection-specific BSM data as a bulk and ignores the individual trips34, i.e., vehicle passings 

at each intersections. At the second level (trip/passing level data), volatility indices are calculated 

for each vehicle passing and not bulk intersection-specific BSM data. To identify individual 

vehicle passings at each intersection, the time and device IDs provided in the SPMD BSM file 

are used. Once the volatility indices are calculated for each passing at a particular intersection, 

the average of the volatility indices for all the passings are calculated and reported as 

intersection-specific volatility measures. Compared to the passing level calculations, the 

calculations using aggregate data are relatively simpler and faster. Nonetheless, keeping in view 

the huge large scale BSM data (N > 230 million BSMs), the computations took considerable time 

on a work station level computer (Dell Precision T7600, 3.1 GHZ (32 CPUs)). 

 

Finally, based on speed, acceleration/deceleration, and vehicular jerk, a total of eight different 

volatility measures at the two levels are calculated.  

                                                 
34 Note that the notion of individual trips in our context refers to individual vehicle passings at each intersection, and 

are not necessarily entire trips undertaken by the instrumented vehicles. From this point onward, for the sake of 

convenience, we will use the words trips and passings interchangeably.  
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Figure 4.2 Measures of driving volatility calculated at trip and intersection level 

 

4.3.3.1 Coefficient of variation: 

 

The first statistical measure used is coefficient of variation in order to simultaneously account for 

the magnitude and heterogeneity (variance) in microscopic driving decisions. Specifically, 

compared to standard deviation or variance, coefficient of variation is scale in-sensitive and this 

property allows meaningful comparisons between the volatility in instantaneous driving 

decisions at different intersections. In particular, coefficient of variations are calculated using 

speed data (both at aggregate level and passing level) as well as vehicular jerk data. Note that 

vehicular jerk cannot be calculated using the aggregate data as vehicular jerk is a derivative of 

acceleration profiles, and as such requires identification of the trajectories of vehicles passing 

through the intersections. For each of the 116 intersections, average and standard deviations of 

speed and vehicular jerk are calculated. Note that the positive and negative values of vehicular 

jerk are separated and coefficients of variations are computed separately. Finally, coefficient of 
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variation, as a measure of intersection-specific volatility, is calculated by dividing the standard 

deviation of the driving measure (speed, vehicular jerk) by the average of the driving measure, 

i.e.,𝜎 𝜇⁄ . 

 

4.3.3.2 Mean absolute deviation around mean: 

 

This measure quantifies the average of difference of each individual observations from the mean. 

MAD is very similar to standard deviation but it is simpler and more intuitive (Huber, 2005). 

𝑀𝐴𝐷𝑚𝑒𝑎𝑛 =  
1

𝑛
∑|𝑥𝑖 − �̅�|

𝑛

𝑖=1

 
Equation 4.1 

 

 

As a measure of driving volatility, the mean absolute deviance is calculated for vehicular jerk at 

passing level.  

 

4.3.3.3 Percentage of outliers: 

 

Another potential way of quantifying the extent of volatility in microscopic driving decisions is 

to obtain the ratio of outlier observations to total number of observations (Liu et al., 2015b):  

𝑉𝑂 =
𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑜𝑏𝑠. 𝑏𝑒𝑦𝑜𝑛𝑑 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑛
∗ 100 

Equation 4.2 

 

Where: n is the total of number of observations. In this study, we have defined threshold as �̅� ±

2 ∗ 𝑆𝑑𝑒𝑣. In case of applying the above equation to speed data, there would be two threshold as 

upper and lower bounds, and the speed observations falling outside the two bounds can be 

counted as outliers. However, in case of acceleration/deceleration, the capability of a vehicle to 

accelerate/deceleration vary significant at different traveling speeds, i.e., at higher speeds the 
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possible values of maximum acceleration and minimum deceleration are considerably smaller 

than the ones observed at lower speed. Therefore, instead of having two fixed upper and lower 

bounds, it would be more appropriate to define speed bins where each of them has their own 

upper and lower bound. The concept of is shown in Figure 4.3. Note that the driving volatility 

indices using this method are calculated both at intersection and passing level (see Figure 4.2).  

 

 
Figure 4.3 Dynamic speed varying thresholds for calculating volatility in 

acceleration/deceleration using BSM data.  

 

4.3.3.4 Time dependent dynamic volatility: 

 

This volatility measure is commonly used in Finance to analyze volatility in financial markets 

(Figlewski, 1994). This measure takes into account the time-series dependencies in the 

instantaneous driving data by calculating the standard deviation of the logarithms of the ratios of 

current observations 𝑥𝑖 to 𝑥𝑖−1 as follow (Kamrani et al., 2018, Figlewski, 1994): 
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𝑉𝑓 = √
1

𝑛 − 1
∑(ri − �̅�)2

𝑛

𝑖=1

     from 𝑖 = 1 to 𝑛 

Equation 4.3 

 

Where: 

ri = ln (
𝑥𝑖

𝑥𝑖−1
) ∗ 100 

Equation 4.4 

 

Note that the time dependent dynamic volatility can only be calculated at passing/trip-level and 

not using the aggregate data for each intersection (Figure 4.2). Overall, at intersection level, all 

the observations from different vehicles are placed back to back of each other and then overall 

intersection volatilities are calculated. Contrarily, at trip/passing level, the volatility of each trip 

is obtained and the average of trip volatilities are reported as the intersection volatility. 

 

4.3.4 Statistical Models 

Once the intersection-specific volatilities are calculated, we investigate the correlations between 

crashes and location-based volatility, after controlling for other traffic and geometric related 

factors. Appropriate statistical models can shed light on microscopic driving decisions i.e., 

intersection-specific volatility, and how such decisions influence intersection safety.  

As the number of crashes occurring at a specific intersection have count nature, count data 

models can be estimated (Washington et al., 2010, Kamrani et al., 2017). In particular, the 

dependent variable is average number of crashes over a five-year period. Regarding the 

distributional forms, we consider Poisson and Poisson-lognormal regressions to model 
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intersection crashes as a function of intersection-specific volatilities and other factors (El-

Basyouny and Sayed, 2009a, Kamrani et al., 2017). 

 

4.3.4.1 Poisson regression 

 

Let Ni denote the number of crashes at intersection i, where i = 1,2,3, … … , N. The probability of 

observing N crashes at intersection i, (P(Ni)), then can be formulated as:  

P(Ni) =
exp (−λi)λi

N

Ni!
 

Equation 4.5 

 

Where: λi is Poisson parameter for intersection i, and is mathematically equal to expected crash 

frequency at intersection i, E(Ni) . Typically, λi is a log-link function of a set of explanatory 

factors (Washington et al., 2010, Kamrani et al., 2017): 

E(Ni) = ln(λi) = βo + β1Xi1 + β2Xi2 + ⋯ … + βNXiN Equation 4.6 

 

In Equation 4.6, X is a matrix of explanatory factors such as intersection-specific volatility, 

traffic and geometric factors, and β′s are model parameters.  

 

4.3.4.2 Poisson-lognormal regression 

 

Crash data is often characterized by over-dispersion i.e., mean is greater than variance. As an 

alternative to negative binomial/Poisson-gamma models (which accounts for over-dispersion), 

researchers have recently proposed to use Poisson-lognormal models for modeling crash 

frequency. For Ni number of crashes at intersection i, Poisson-lognormal model assumes that 

crashes at i intersections are independent and distributed as: 
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Ni|θi~Poisson(θi) Equation 4.7 

 

As opposed to Poisson regression where the mean and variance of crash data are constrained to 

be equal (Poch and Mannering, 1996), one may also address over-dispersion for the unmeasured 

heterogeneity in Poisson log-normal model as (El-Basyouny and Sayed, 2009a): 

θi = λiexp (λi) Equation 4.8 

 

And, where: exp (λi) indicates a multiplication random effect (El-Basyouny and Sayed, 2009a).  

λi can then be regressed, as a log-link function, on a set of explanatory factors following the 

same specification in Equation 6. Specifically, exp (λi) is now assumed to be log-normally 

distributed with mean 0 and variance σλ
2.  

 

Unlike the coefficients in a linear regression, the coefficients in Poisson/Poisson log-normal 

regression cannot be interpreted as marginal effects. To better interpret the results, elasticities of 

each variable are examined. Generally, elasticity can be calculated as (Washington et al., 2010): 

ExiN

λi =
∂λi

∂xiN

xiN

λi
= βNxiN 

Equation 4.9 

 

Where: E is the elasticity, xiN is the value of the Nth explanatory factor for observation i, βN is 

the parameter estimate for Nth explanatory factor, and λi is the expected crash frequency for 

observation i (Washington et al., 2010). Following (Washington et al., 2010), we compute the 

elasticities for each observation i, and report a single elasticity as an average elasticity for all i.  
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Note that the elasticity obtained through Equation 4.9 holds for continuous variables and not 

discrete. For dummy variables, we examine pseudo-elasticity. To examine the change in crash 

frequency with dummy variable switching from 0 to 1, the pseudo-elasticity can be computed as: 

ExiN

λi =
exp(βN) − 1

exp (βN)
 

Equation 4.10 

 

4.3.4.3 Unobserved Heterogeneity in Poisson and Poisson log-normal Models 

 

Given that the integrated CAV and intersection inventory data is assembled manually, not all 

factors that may influence crash frequency can be observed. Due to such unobserved factors, the 

associations between independent variables (such as intersection-specific volatility) and crash 

frequency may be varying across intersections. This is referred to as unobserved heterogeneity in 

the literature (Anastasopoulos and Mannering, 2009, Anastasopoulos et al., 2012, Khattak et al., 

2016, Li et al., 2017, Mannering and Bhat, 2014, Mannering et al., 2016, Wali et al., 2017a, Wali 

et al., 2018b, Wali et al., 2018c, Wali et al., 2018d, Wali et al., 2018e), and in presence of which 

reliable and unbiased correlations between crash frequency and other factors (driving volatility in 

our case) cannot be established (Anastasopoulos and Mannering, 2009, El-Basyouny and Sayed, 

2009a). Also, if important variables are omitted from the models (e.g., key geometric variables), 

it may happen that the observed correlation between location-based volatility (independent 

variable) and crash frequency may be an outgrowth of those omitted factors, and not true 

correlation between volatility and crash frequency. Given these issues, we account for 

unobserved heterogeneity by allowing the model parameters (β′s) to vary across intersections in 

the Poisson and Poisson log-normal models as: 
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E(Ni) = ln(λi) = βi,o + βi,1Xi1 + βi,2Xi2 + ⋯ … + βi,NXiN Equation 4.11 

 

Where: βi,j~Normal(βj, σj
2) and where j = 0,1,2, … . N. We have considered different 

distributions for the regression parameters (βi,j), however, normal distribution is observed to 

result in best fit (Dong et al., 2016). Further details can be found in (El-Basyouny and Sayed, 

2009a, Dong et al., 2014).  

 

4.3.5 Parameter Estimation 

4.3.5.1 Prior Distributions 

 

For the estimation of fixed- and random-parameter count data models, we have employed a full 

Bayesian estimation method. As such, it is essential to specify prior distributions for the 

regression parameters (β′s) and variance parameters (σj
2). Strong informative priors can be used 

for estimable parameters when good prior information (e.g. from past research) is available, 

otherwise, non-informative (or vague) priors can be used. For regression parameters in Equation 

4.6 (i.e., fixed parameter models), we use flat priors (similar to frequentist approach). For 

random parameter models, the following priors were used: βi,j~Normal(0, 1002) and 

σj
−2~Gamma(0.001,0.001) or σj

−2~Gamma(1,0.001)(Dong et al., 2016). These prior 

specifications are consistent with the literature (Qin et al., 2005). A regression parameter was 

considered random if the posterior estimate of σ ̂j
2 was statistically significantly greater than zero. 

All the 95% credible intervals for location and shape parameters are constructed using the 2.5th 

percentiles and the 97.5th percentiles of the corresponding posterior distributions. 
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4.3.5.2 Markov Chain Monte-Carlo Methods 

 

To quantify the uncertainty estimates for βi,j and σj
−2, posterior distributions are needed which 

are obtained using MCMC Gibbs Sampler techniques. Repeated samples are obtained from joint 

posterior distributions until the generated chains of random draws converge to the target 

posteriors. For the estimation process, a sub-sample of the random draws is used to monitor 

convergence and then discarded as burn-in sample. The remaining random draws are used to 

summarize parameter estimates, establish credible intervals, and inference. Proper convergence 

should be established before parameter estimation. To check convergence, for the fixed- and 

random-parameter Poisson and Poisson log-normal models, two chains are initiated each with 

100,000 draws (in two updates of 50,000 draws) with 50,000 random draws used as burn-in 

samples. Following literature, we use Brooks-Gelman-Rubin (BGR) statistic for assessment of 

convergence. In our case, the BGR statistic was less than 1 for all parameter estimates, indicating 

convergence (Spiegelhalter et al., 2003).  

 

Finally, for evaluating model performance and for comparing competing models, a Bayesian 

generalization of Akaike’s Information Criteria (AIC) (Bozdogan, 1987), Deviance Information 

Criteria (DIC), is used. The criteria accounts for model complexity and fit, and is calculated as 

(Spiegelhalter et al., 2003):  

DIC = Dbar + Dbar − Dhat Equation 4.12 

 

Where: Dbar is the posterior mean of the unstandardized deviance of the model, D, and Dhat is 

the point estimate obtained by substituting  Dbar in D. Following (Spiegelhalter et al., 2003), a 
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difference of more than 10 in DICs of two competing models may certainly rule out the model 

with higher DIC, whereas differences between 5 and 10 are substantial (El-Basyouny and Sayed, 

2009a). However, if the difference in DICs of the competing models is less than 5, and the 

models suggest very different results, then it is essential to report both of the models 

(Spiegelhalter et al., 2003). 

 

The likelihoods for estimable models are coded and evaluated in Stata’s MATA language and 

MCMC Gibbs sampling performed in WinBUGS software which provides efficient tools for 

complex Bayesian inference.  

 

4.3.6 Spatial Correlation Analysis 

The modeling framework described earlier can capture unobserved heterogeneity in the observed 

relationships due to systematic variations in the unobserved factors. However, the random 

parameter modeling framework considers intersections independent of each other, i.e., the safety 

performance of one intersection is independent of the safety performance of another intersection 

in close proximity (Zeng et al., 2017, El-Basyouny and Sayed, 2009c). In recent years, several 

studies have shown that a micro-level spatial correlation can exist among segments/intersections 

in the sense that intersections nearer to each other will tend to be more similar (Guo et al., 2010, 

Quddus, 2008, Quddus, 2013a, El-Basyouny and Sayed, 2009c). In our case, the hypothesis is 

that the micro-level correlation may represent a second order variation that could not be 

reasonably explained by the explanatory factors alone. In order to examine the possibility of 

spatial autocorrelation, we conduct Moran’s I test on the residuals of the estimated models for all 
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intersections as well as signalized intersections only (Guo et al., 2010, Quddus, 2008). Following 

Banerjee (2014)(Banerjee et al., 2014), the statistic is defined as (Black and Thomas, 1998):  

Moran′s I statistic =  
n ∑ ∑ wij(Yi − Y′)(Yj − Y′)ji

(∑ wiji≠j ) ∑ (Yi − Y′)2
i

 
Equation 4.13 

 

Where: n is the total number of intersections indexed by i and j, Yi and Yj are the average crashes 

at intersections i and j, Y′ is the global average of crashes at all intersections, and wij is the 

spatial proximity matrix that captures the spatial correlations among the intersections i and j. A 

common approach (especially in case of road segments) is to construct a contiguity matrix: 

setting the diagonal entries in this matrix as 0 and off-diagonal elements as 1, i.e., 1 if two 

intersections are neighbors, and 0 otherwise (Banerjee et al., 2014, Zeng et al., 2017, El-

Basyouny and Sayed, 2009c). However, the wij in our case is populated as a function of the 

distance between the sample intersections as (Quddus, 2013a): 

wij = (
c(dij)          if i ≠ j

0                   if i = j
) 

Equation 4.14 

 

Where: c(dij) is a decreasing function of the distances between intersections (dij) so that nearby 

intersections are more similar than the distant ones (Drukker et al., 2013). In this study, an 

inverse distance function is adopted, i.e., c(dij) =
1

dij
. For details, see (Quddus, 2013a, Drukker 

et al., 2013, Banerjee et al., 2014, Black and Thomas, 1998). Finally, a positive statistically 

significant Moran’s I statistic will suggest that the crashes are positively spatially correlated and 

vice versa.  
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4.4 DATA 

 

The connected vehicles data used in this study comes from the US-DOT sponsored Safety Pilot 

Model Deployment (SPMD) in Ann Arbor, Michigan. We retrieved the data from the official 

website of US-DOT Research Data Exchange program: https://www.its.dot.gov/data/. This pilot 

intends to display vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication 

systems in a multi-modal real-life traffic environment with approximately 3,000 connected 

vehicles. Of specific interest are the Basic Safety Messages (BSMs) that provide high-frequency 

(usually ten times per second) information packets containing detailed data on vehicle’s motion 

(heading, accelerations, speed), location (latitude, longitude, elevation), and driving context 

related factors. Specifically, the entire two months (October and April, 2012) publicly available 

connected vehicles data are used in this study. By using more than 230 million geo-coded BSMs 

aggregated to each intersection, intersection-specific volatilities are then calculated for all 116 

intersections (53 signalized and 63 un-signalized intersections) using the methods described 

earlier. Next, for analyzing correlations between crashes and intersection volatility, historical 

crash data (2011-2015) are manually collected. As discussed earlier, the correlation between 

intersection-specific volatility and crashes cannot be established without accounting for the 

simultaneous effects of other traffic and/or geometric characteristics (Imprialou et al., 2016, 

Mannering and Bhat, 2014). Thus, significant data collection effort was undertaken to manually 

collect traffic and intersection inventory data for all intersections considered in this study 

(Kamrani et al., 2017). Specifically, data on annual average daily traffic (AADT) on major and 

minor approaches, number of intersection legs, total through lanes, total left turn lanes, and total 

right turn lanes were collected. All this data is publicly available on the website of Metropolitan 

Planning Organization (MPO) in Ann Arbor, Michigan: http://semcog.org/Data-and-Maps, 

https://www.its.dot.gov/data/
http://semcog.org/Data-and-Maps/Map-Gallery
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however is manually extracted as data are not available in analysis ready format (spreadsheet 

form). Out of all the intersections in Ann Arbor, 116 intersections are identified and considered 

in this study. This is because enough connected vehicle data for calculation of intersection-

specific volatilities were available for these intersections. To ensure data accuracy, the 

distributions of key variable used in calculation of intersection volatilities were examined 

(discussed later in Results section). Also, to ensure accuracy and reliability of the manual data 

collection effort, another team member randomly selected 20% of the intersections and matched 

the manually collected data with the one on Ann Arbor MPO website. Doing so resulted in 100% 

correct matching.  

 

4.5 RESULTS 

 

4.5.1 Descriptive Statistics and Concept Illustration 

First, we present the descriptive statistics of the BSM data used in this study. In particular, two-

months of connected vehicles data (sample size of more than 230 million BSMs) are used 

including information on latitude and longitude, speed, and acceleration. Before excluding zero 

speeds, more than 2 million BSMs on-average are available for each intersections that translates 

to an average of 3337 minutes and more than 55 hours of real world driving data per intersection 

(Table 4.1). As shown in Table 1, a total of 6453.17 hours of driving data is used. However, after 

removal of zero speeds, it reduces to 4832.2 hours of driving data with average of 41.6 hours of 

driving data for each intersection (Table 4.1). In terms of vehicle passings, a total of 3291707 
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passings occurred at the 116 intersections, with an average of 28376.8 passings per 

intersection35.  

 

Table 4.1 Descriptive Statistics of BSM Data 

Variable Mean SD Min Max Sum 

Before removal of zero speeds      

Number of Basic Safety 

Messages 2002708 2235865 171193 1.48E+07 2.32E+08 

Minutes of driving data 3337.85 3726.44 285.322 24650.27 3.87E+05 

Hours of driving data 55.63 62.11 4.76 410.84 6453.17 

After removal of zero speeds      

Number of Basic Safety 

Messages 1499648 1402152 167816 9098974 1.74E+08 

Minutes of driving data 2499.41 2336.92 279.693 15164.96 2.90E+05 

Hours of driving data 41.66 38.95 4.66 252.75 4832.20 

Number of passings 28376.8 26185 3745 148419 3291707 

Notes: The column “mean” shows the average number of BSMs or the average minutes/hours of 

driving data available per intersection.  

 

 

Next, Table 4.2 presents the descriptive statistics of key variables used in this study. Key 

distributional parameters are provided for each variable and for total intersections (N = 116), 

signalized intersections (N = 53), and un-signalized intersections (N = 63). Regarding volatility 

related variables, the mean speed at all intersections, signalized, and un-signalized intersections 

is 22.59, 15.95, and 28.19 mph respectively (Table 4.2). This is expected as traveling speeds at 

intersections are generally lower than on roadway segments and given that the sampled 

intersections are in a dense urban area. This suggests that, compared to signalized intersections, 

un-signalized intersections (on-average) have high traveling speeds. 

                                                 
35 We sincerely thank the anonymous reviewer for suggesting to examine the ratio of time when the intersection have 

these CAV based BSMs. That is, if the ratio is not big, speed data based on the basic safety messages may not represent 

the real speed data. An earlier version of this paper used 62 million Basic Safety Messages as analysis of the CAV 

BSM data required significant computational resources. However, the entire 2 months CAV BSM data are now used 

(N > 230 Million BSMs). Considering the statistics and sample sizes in Table 4.1, the vehicle kinematics data can be 

considered to reasonably represent the real vehicle kinematics data at the sampled intersections. 
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Table 4.2 Descriptive Statistics of Key Variables 

 

Variable 

All intersections Signalized Intersections Unsignalized Intersections 

Mean 

Std. 

Dev. Min Max Mean 

Std. 

Dev. Min Max Mean 

Std. 

Dev. Min Max 

Volatility 

Related 

Factors 

Volatility 1* 56.35 24.35 12.77 101.40 76.48 13.94 35.90 101.40 39.41 17.30 12.77 84.03 

Volatility 2 * 6.67 1.12 2.69 8.77 7.28 0.64 5.16 8.50 6.16 1.18 2.69 8.77 

Volatility 3 * 4.12 3.28 0.31 11.88 6.82 2.62 0.71 11.88 1.84 1.63 0.31 7.75 

Volatility 4 * 19.37 14.16 1.34 52.83 30.71 10.85 5.20 52.83 9.84 8.41 1.34 40.47 

Volatility 5 * 2.43 0.50 0.93 3.61 2.68 0.44 1.72 3.61 2.22 0.46 0.93 3.36 

Volatility 6 * 78.10 5.53 68.23 96.17 81.69 4.49 73.32 92.87 75.08 4.42 68.23 96.17 

Volatility 7 * 76.59 4.40 68.60 93.52 78.45 3.99 71.93 93.52 75.02 4.14 68.60 87.78 

Volatility 8 * 0.85 0.12 0.57 1.16 0.85 0.11 0.65 1.01 0.84 0.13 0.57 1.16 

Mean Speed  22.59 8.93 8.55 43.89 15.95 4.96 8.55 33.01 28.19 7.59 12.13 43.89 

Standard deviation 

of speed 10.71 2.19 4.74 15.14 11.58 1.56 7.62 14.98 9.99 2.39 4.74 15.14 

Crash 

history 

Average crashes 

over five year 

period 6.78 6.67 0 40 11.66 6.80 1 40 2.68 2.52 0 12 

Crash rate (Per 

million entering 

vehicles) 0.57 0.49 0 2.18 0.96 0.44 0.12 2.18 0.24 0.19 0 0.9 

 

Exposure 

Major road AADT 

(in thousands) 20.8 8.32 3.1 45.4 22.74 8.2 3.6 45.4 19.17 8.13 3.1 38.9 

Minor road AADT 

(in thousands) 9.39 4.13 1.1 27.4 9.99 5.7 3.1 27.4 8.89 1.97 1.1 13.4 

Log form: Major 

road AADT in 

thousands 2.94 0.49 1.13 3.82 3.06 0.40 1.28 3.82 2.84 0.54 1.13 3.66 

Log form: Minor 

road AADT in 

thousands 2.15 0.47 0.10 3.31 2.16 0.52 1.13 3.31 2.13 0.43 0.10 2.60 

Notes: (*) Volatility 1: Intersection level: Coefficient of variation of speed (%); Volatility 2: Intersection-level: Two standard deviations threshold 

for acceleration/deceleration; Volatility 3: Passing level: Time stochastic volatility; Volatility 4: Passing level: Coefficient of variation of speed 

(%); Volatility 5: Passing-level: Two standard deviations threshold for acceleration/deceleration; Volatility 6: Passing-level: Coefficient of 

variation of positive vehicular jerk; Volatility 7: Passing-level: Coefficient of variation of negative vehicular jerk; Volatility 8: Passing level: Mean 

absolute deviance of vehicular jerk; Std. Dev. is standard deviation. 
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Table 4.2 Descriptive Statistics of Key Variables (Continued) 

 Variable 
 

All intersections Signalized Intersections Unsignalized Intersections 

Mean 

Std. 

Dev. Min Max Mean 

Std. 

Dev. Min Max Mean 

Std. 

Dev. Min Max 

Geometric 

Factors 

 

Speed limit major 

road 35.34 7.24 25 45 35.94 7.34 25 45 34.84 7.18 25 45 

Speed limit 

minor road 30.47 3.96 25 45 30.85 5.16 25 45 30.16 2.53 25 40 

Signalized 

Intersections 0.46 0.50 0 1 1 0 1 1 0 0 0 0 

Four legged 

intersections 0.41 0.49 0 1 0.62 0.49 0 1 0.22 0.42 0 1 

Total number of 

through lanes 6.93 2.51 3 15 8.51 2.68 4 15 5.60 1.31 3 9 

Total number of 

right turn lanes 0.94 0.78 0 4 1.11 1.01 0 4 0.79 0.48 0 2 

Total number of 

left turn lanes 1.53 1.33 0 6 2.26 1.40 0 6 0.92 0.89 0 3 

Notes: Std. Dev. is standard deviation. 
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As can be seen, the mean speeds at signalized and un-signalized intersections are very different. 

Likewise, the average speed at signalized intersections is 15.95 mph which is lower than the 

mean speed of 28.19 mph at un-signalized intersections. Based on these distributions, the 

connected vehicle data seem to be of reasonable quality. 

 

Interestingly, the (mean) standard deviations of speeds for signalized intersections is little higher 

than un-signalized intersections (11.58 vs 9.99) (Table 4.2), suggesting that the variability in 

instantaneous driving speeds at signalized intersections is a bit higher than un-signalized 

intersections. However, in our case mean speeds at signalized and un-signalized intersections are 

significantly different (15.95 vs 28.19 mph), and in such case comparing the degree of variation 

(driving volatility) at signalized and un-signalized intersections by using standard deviation can 

often produce misleading and inaccurate conclusions (Wander and D'Vari, 2003). Thus, 

coefficient of variation can be used which represents the ratio of standard deviation to the mean, 

and is a useful statistic for comparing the variability in instantaneous driving decisions between 

signalized and un-signalized intersections even if the mean speeds (or other driving measure) 

differ significantly (Washington et al., 2010, Weber et al., 2004). In fact, coefficient of variation 

is widely used as a measure of heterogeneity in organizational demography research (Knight et 

al., 1999, Pelled et al., 1999). Having said this, the distributions of coefficient of variation (COV) 

of speed (as a measure of intersection-specific volatility) at intersection level shows that 

signalized intersections have in fact greater volatility (mean volatility 1 of 76.48 vs. 39.41 for 

signalized and un-signalized intersections) (Table 4.2). Likewise, coefficient of variation of 

speed calculated at passing level also reveals instantaneous driving speeds at signalized 

intersections to be more volatile (Table 4.2).  
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Coming to the driving volatility calculated using the percentage of outliers method, the results 

show that instantaneous accelerations/decelerations at signalized intersections are more volatile 

compared to un-signalized intersections, both at intersection as well as passing level (see 

volatility 2 and volatility 5 in Table 4.2). Likewise, the results of time-dependent dynamic 

volatility (volatility 2) reveals a significantly higher volatility in speeds at signalized 

intersections (6.82 for signalized intersections vs. 1.84 for un-signalized intersections). Overall, 

all of the volatility measures reveal signalized intersections to be more volatile (Table 4.2).  

 

Regarding unsafe outcomes and traffic exposure, signalized intersections have higher (on-

average) crash frequency and higher traffic exposure than their un-signalized counterparts (Table 

4.2). As signalized intersections often have higher traffic volumes, crash rates are also reported in 

Table 4.2 in order to better compare the occurrence of unsafe outcomes at signalized and un-

signalized intersections36. However, the crash rate comparison reveals that signalized 

intersections on-average have 0.96 crashes per million entering vehicles compared to 0.24 

crashes per million entering vehicles at un-signalized intersections (Table 4.2). Compared to un-

signalized intersections, the higher crash rates at signalized intersections is in agreement with the 

literature (Hazel, 2015). The data also reveals that speed limits on major and minor approaches 

are approximately similar for signalized and un-signalized intersections (Table 4.2).  Likewise, 

62% and 22% of the signalized and un-signalized intersections are four-legged respectively 

(Table 4.2). Based on the above statistics and the fact that the crash, traffic, and inventory data is 

                                                 
36 Following the guidelines provided by U.S. Federal Highway Administration (Golembiewski and Chandler, 2011), 

crash rates at intersection are calculated using the formula 𝑅 =
1,000,000∗𝐶

365∗𝑁∗𝑉
, where R is the crash rate for the intersection 

expressed as accidents per million entering vehicles (MEV), C is total number of intersection crashes in the study 

period, N is number of years of data, and V is traffic volumes entering the intersection daily (Golembiewski and 

Chandler, 2011).  
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extracted from a well-maintained publicly available database (Southeast Michigan Council of 

Governments – SEMCOG), the data is of reasonable quality. Furthermore, to visualize the 

relationship between intersection-specific volatilities and crash frequency, Figure 4.4A shows the 

historical crash frequencies (orange bubbles on the left) and intersection-specific volatilities 

(blue bubbles on the right) for the sampled 116 intersections. For illustration, intersection level 

driving volatilities based on percentage of outliers of acceleration/deceleration (as illustrated in 

Figure 3 earlier) are used in Figure 4.4A. As discussed earlier, the intersection-specific 

volatilities capture the extent of variations in instantaneous driving decisions when a vehicle is 

being driven at a specific intersection. Broadly, for the encircled intersections in Figure 4.4A, 

crash frequencies are generally lower while intersection-specific volatilities are relatively larger. 

To further elaborate the point, the bottom panel (Figure 4.4B) focuses on a subset of intersections 

which are highlighted in top panel. Here, the differences are clearer in the sense that some 

intersections can be termed “known hot-spots” (highlighted in solid circles) i.e., both crash 

frequencies and volatilities are higher and approximately similar, whereas the intersections 

highlighted in dashed circles have lower crash frequencies but significantly higher intersection-

specific volatilities. This implies that the observed crash frequency is lower but perhaps crashes 

are waiting to happen as instantaneous driving decisions are consistently more volatile at such 

intersections (Schneider et al., 2004). For intersection safety management, such information is 

crucial as it can highlight intersection locations where behaviors of drivers may differ, compared 

to their behaviors at other intersection locations. Thus, safety managers may consider proactive 

countermeasures at such locations, e.g., providing proactive alerts and warnings to drivers 

through connected vehicle roadside equipment (RSE) (Kamrani et al., 2017, Khattak and Wali, 

2017, Wali et al., 2018e).
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Figure 4.4 Visual Illustration of Relationship between Intersection-Specific Volatility and Crash 

Frequency 

(Orange bubbles indicate average crash frequency and blue bubbles indicate intersection-specific 

volatility; Bubbles scaled equivalently for comparison purposes). 

 

4.5.2 Modeling Results 

The descriptive statistics and simple visualizations presented earlier helped in spotting 

meaningful relationships between crash frequency and intersection-specific volatilities. 

However, without controlling for important traffic exposure and/or geometric related factors, the 

descriptive or visual relationships are not conclusive (Imprialou et al., 2016). Given the count 

data nature of crashes, appropriate count data models in a Full Bayesian setting are estimated. 
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Specifically, average of yearly crashes over a five years period at intersections is modelled as a 

function of intersection-specific volatilities, and other factors (Table 4.2). The results of 

statistical models are presented and discussed next that quantify the correlations between crashes 

and intersection-specific volatilities, after controlling for other traffic and geometric related 

factors.  

 

All the models (for all intersections and signalized) are derived from a systematic process to 

include most important variables (available in the data) based on intuition, statistical 

significance, and specification parsimony. Initially, a series of full Bayes fixed-parameter pooled 

Poisson models were estimated for all intersections by controlling for signalized vs. un-

signalized intersections through a dummy variable (see Table 4.2). All the variables shown in 

Table 4.2 were tested and the statistically significant explanatory factors were retained. Among 

all the factors available, the focus was on examining the relationships between intersection-

specific volatilities and crash frequency. As discussed in detail in the methodology section, 

unobserved heterogeneity is suspected and in presence of which the correlations obtained in full 

Bayes fixed parameter models may be biased and inefficient. As such, random-parameter 

Poisson model is estimated in full Bayesian context. Compared to random-parameter Poisson 

models, random-parameter Poisson log-normal models can help in accounting for extra over-

dispersion in crash data, if any is left behind. Thus, random parameter Poisson log-normal model 

is also estimated. A parameter estimate for a particular explanatory variable is treated as random 

if the parameter estimates exhibited 1) only statistically significant standard deviations, or 2) 

exhibited both statistically significant means and standard deviations. If a parameter estimate 

exhibited only statistically significant standard deviations, the information criteria statistic was 
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examined to compare the model treating the specific variable as random parameter (with only 

statistically significant standard deviation) with the alternative model treating the parameters for 

the same variable as fixed parameter (Fountas and Anastasopoulos, 2017). Further details about 

the implications of statistical significance of mean and variance parameters in random parameter 

modeling framework can be found in (Behnood and Mannering, 2017b, Wali et al., 2018e, Wali 

et al., 2018b). Table 4.3 presents the results of fixed parameter Poisson (base model), 

hierarchical random parameter Poisson model, and hierarchical random parameter Poisson log-

normal model. Compared to the fixed-parameter Poisson model, both hierarchical random 

parameter Poisson and hierarchical random parameter Poisson log-normal model resulted in 

better fit (as shown by the DIC values in Table 4.3). However, the hierarchical random parameter 

Poisson log-normal performed better than the hierarchical random parameter Poisson model 

(DIC values of 546.871 vs. 552.969). This suggests that there exists extra over-dispersion in 

crash data beyond the one captured in random parameter Poisson regression. However, the extra-

Poisson variance in hierarchical random parameter Poisson log-normal model is not substantial 

(see Table 4.3).  
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Table 4.3 Full Bayes Gibbs Sampler Random Parameter Estimation of Crash Models (All 

Intersections) 

Variables 

Fixed 

Parameter 

Poisson Model 

Hierarchical Random 

Parameter Poisson 

(HRPP) Model 

Hierarchical Random 

Parameter Poisson 

Log-Normal (HRP-

PLN) Model 

Mean effects (location parameters)    

Volatility Related Factors    

Volatility 2a 

 

0.19  

(0.0742, 0.3052) 

0.258  

(0.0741, 0.3920) 

0.188  

(0.0984, 0.2806)  

Volatility 4b 

 

0.011  

(0.0041, 0.0188) 

0.0123  

(0.0027, 0.0218) 

0.013 

 (0.0225, 0.0246) 

Volatility 8c 

 

0.392  

(-0.339, 1.134) 

0.772  

(0.1549, 1.7190) 

0.414  

(0.0847, 0.8961) 

Other factors    

Major road AADT (log form) 

 

0.763  

(0.5501, 0.9845) 

0.748  

(0.5223, 0.9609) 

0.732  

(0.4846, 0.9659) 

Minor road AADT (log form) 

 

0.201  

(0.0518, 0.3589) 

0.148  

(0.0657, 0.3795) 

0.160  

(0.0812, 0.3788) 

Signalized intersection 

 

0.73  

(0.4859, 0.9744) 

0.680  

(0.4650, 0.9498) 

0.733  

(0.3228, 1.0711) 

Four leg intersection 

 

0.319 

(0.154, 0.489) 

0.277  

(0.0462, 0.5075) 

0.298  

(0.0520, 0.5445) 

Constant 

 

-3.4  

(-4.7390,-

1.9690) 

-4.042  

(-5.732, -3.826) 

-3.298  

(-4.561, -2.2011) 

Unobserved effects (standard 

deviations/scale parameters)    

Signalized intersection 

 --- 

0.053  

(0.0164, 0.1821) 

0.048  

(0.0167, 0.1521) 

Volatility 2a 

 --- 

0.037  

(0.0184, 0.0574) 

0.032  

(0.0163, 0.0521) 

Volatility 8c 

 --- 

0.053  

(0.0161, 0.212) 

0.047  

(0.0162, 0.1705) 

Major road AADT (log form) 

 --- 

0.048 

 (0.0169, 0.1071) 

0.042  

(0.0161, 0.0931) 

Extra-Poisson variance 

 --- --- 

0.0311  

(0.0007, 0.123) 

Goodness of Fit    

Dbar 577.353 499.818 497.691 

Dhat 569.294 446.667 448.511 

pD 8.058 53.151 49.18 

DIC 585.411 552.969 546.871 

Notes: (a) Volatility 2 is Intersection-level: Two standard deviations threshold for acceleration/deceleration, (b) 

Volatility 4 is Passing level: Coefficient of variation of speed, (c) Volatility 8 is Passing level: Mean absolute 

deviance of vehicular jerk. All the 95% credible intervals for location and shape parameters are constructed using 

the 2.5th percentiles and the 97.5th percentiles of the corresponding posterior distributions; Included in the 

parenthesis are the 95% credible intervals for location and shape parameters. 
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Next, separate regression models (un-pooled) are estimated for quantifying the relationship 

between intersection volatility and crash frequency for signalized intersections. For signalized 

intersections, the results of full Bayes fixed parameter Poisson, hierarchical random parameter 

Poisson, and hierarchical random parameter Poisson log-normal models are presented in Table 

4.4. As can be seen, hierarchical random parameter Poisson model resulted in best fit37 (lowest 

DIC value of 305.366) (Table 4.4). Note that the DIC of hierarchical random parameter Poisson 

log-normal model is 306.226 which is slightly more than the DIC of random parameter Poisson 

model. As the differences in DIC is negligible, and given that the parameter estimates in both of 

the models do not differ significantly, a random parameter Poisson model is preferable. Also, the 

extra variance in random parameter Poisson log-normal model is negligible.  

 

Finally, to better interpret the results, elasticities for continuous variables and pseudo-elasticities 

for dummy variables are provided for all the estimated models in Table 4.5. In particular, the 

mean, standard deviations, minimum, and maximum elasticities are provided for all the variables 

to spot the differences. With all other variables controlled at average values, average elasticities 

translate to percentage increase/decrease in crash frequency with a one percent increase in 

corresponding continuous variable from its mean value (switching from 0 to 1 for dummy 

variable). Whereas, maximum elasticities translate to percentage increase/decrease in crash 

frequency with a one percent increase in the maximum value of corresponding continuous 

variable (Table 4.5). As hierarchical random parameter Poisson log-normal model and random  

                                                 
37 Given the possibility of spatial autocorrelation among the sampled intersections (as discussed earlier), Moran I 

tests are conducted on the residuals of models for all intersections as well as signalized intersections only. For all 

intersections, the calculated Moran’s I for the error terms of the Poisson model is 0.044 with a corresponding z-

statistic of 1.33. Likewise, for signalized intersections, the estimated Moran’s I statistic of the error terms of Poisson 

regression is 0.081 with a z-statistic of 1.42. Given the small and statistically insignificant Moran’s I statistics, a lack 

of significant positive spatial autocorrelation in the data can be concluded at a 99% confidence level. 
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Table 4.4 Full Bayes Gibbs Sampler Random Parameter Estimation of Crash Models 

(Signalized Intersections Only) 

Variables 
Fixed Parameter Poisson 

Model 

Hierarchical 

Random 

Parameter 

Poisson Model 

Hierarchical 

Random 

Parameter 

Poisson Log-

Normal Model 

Mean effects (location 

parameters)    

Volatility Related 

Factors    

Volatility 2a 

 

0.011  

(-0.0211, 0.2413) 

0.075  

(-0.0031, 0.2693) 

0.136  

(-0.0498, 0.3433) 

Volatility 4b 

 

0.012  

(0.0036, 0.0203) 

0.0014  

(0.0024, 0.0261) 

0.014  

(0.0014, 0.0262) 

Other factors    

Major road AADT (log 

form) 

 

0.660  

(0.4079, 0.91140 

0.573  

(0.2917, 0.9205) 

0.581  

(0.0171, 0.9655) 

Minor road AADT (log 

form) 

 

0.020  

(0.0416, 0.3595) 

0.164  

(0.0509, 0.4056) 

0.165 

 (-0.0785, 0.3987) 

Four leg intersection 

 

0.3429  

(0.1475, 0.5424) 

0.335  

(0.0529, 0.6181) 

0.313  

(0.0267, 0.5987) 

Constant 

 

-1.482  

(-2.5512, -0.4075) 

-0.9574  

(-2.5860, 0.7146) 

-1.416  

(-2.9140, 0.1474) 

Unobserved effects (standard 

deviations/scale parameters)    

Major road AADT (log 

form) 

 --- 

0.044  

(0.0166, 0.0987) 

0.040  

(0.0161, 0.0911) 

Volatility 4 

 --- 

0.045  

(0.0187, 0.0549) 

0.031  

(0.0162, 0.0518) 

Extra-Poisson variance 

 --- --- 

0.0289  

(0.0008, 0.1171) 

Goodness of Fit    

Dbar 329.556 276.811 275.447 

Dhat 323.525 248.256 244.669 

pD 6.031 28.555 30.778 

DIC 335.588 305.366 306.226 

Notes: (a) Volatility 2 is Intersection-level: Two standard deviations threshold for 

acceleration/deceleration, (b) Volatility 4 is Passing level: Coefficient of variation of speed. All the 95% 

credible intervals for location and shape parameters are constructed using the 2.5th percentiles and the 

97.5th percentiles of the corresponding posterior distributions; Included in the parenthesis are the 95% 

credible intervals for location and shape parameters. 
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Table 4.5 Elasticity Estimates for Explanatory Variables 

Variables 

All Intersections 

Poisson Model HRPP Model HRP-PLN Model 

µ SD Min  Max µ  SD Min  Max µ SD Min  Max 

Volatility 

Related Factors             

Volatility 2a 1.27 0.21 0.51 1.67 1.72 0.29 0.70 2.26 1.25 0.21 0.51 1.65 

Volatility 4b 0.21 0.16 0.01 0.58 0.24 0.17 0.02 0.65 0.25 0.18 0.02 0.69 

Volatility 8c 0.33 0.05 0.22 0.46 0.65 0.09 0.44 0.90 0.35 0.05 0.24 0.48 

Other factors             

Major road 

AADT (log 

form) 2.24 0.37 0.86 2.91 2.20 0.37 0.85 2.85 2.15 0.36 0.83 2.79 

Minor road 

AADT (log 

form) 0.43 0.09 0.02 0.67 0.32 0.07 0.01 0.49 0.34 0.08 0.02 0.53 

Signalized 

intersection 0.52 0 0.52 0.52 0.49 0 0.49 0.49 0.52 0 0.52 0.52 

Four leg 

intersection 0.27 0 0.27 0.27 0.24 0 0.24 0.24 0.26 0 0.26 0.26 

 Signalized Intersections 

 Poisson Model HRPP Model HRP-PLN Model 

 µ SD Min  Max µ SD Min  Max µ SD Min  Max 

Volatility 

Related Factors             

Volatility 2a 0.08 0.01 0.06 0.09 0.55 0.05 0.39 0.64 0.99 0.09 0.70 1.16 

Volatility 4b 0.37 0.13 0.06 0.63 0.04 0.02 0.01 0.07 0.43 0.15 0.07 0.74 

Other factors             

Major road 

AADT (log 

form) 2.02 0.26 0.85 2.52 1.75 0.23 0.73 2.19 1.78 0.23 0.74 2.22 

Minor road 

AADT (log 

form) 0.04 0.01 0.02 0.07 0.36 0.09 0.19 0.54 0.36 0.09 0.19 0.55 

Four leg 

intersection 0.29 0 0.29 0.29 0.28 0 0.28 0.28 0.27 0 0.27 0.27 

Notes: (a) Volatility 2 is Intersection-level: Two standard deviations threshold for 

acceleration/deceleration, (b) Volatility 4 is Passing level: Coefficient of variation of speed, (c) 

Volatility 8 is Passing level: Mean absolute deviance of vehicular jerk. HRPP is Hierarchical 

Random Parameter Poisson Model; and HRP-PLN is Hierarchical Random Parameter Poisson 

Log-Normal Model; µ indicates mean/average value.  
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parameter Poisson model resulted in best fit for all intersections and signalized intersection 

respectively, we focus our discussion of the results obtained from these two model only. 

 

4.6 DISCUSSION 

 

4.6.1 Safety Effect of Intersection Volatility 

Coming to the results of fixed-parameter Poisson model for all intersections in Table 4.3, crash 

frequency is found associated with three of volatility related factors, 1) Intersection-level: Two 

standard deviations threshold (Volatility 2) , 2) Passing-level: coefficient of variation of speed 

(Volatility 4), and 3) Passing-level: mean absolute deviance of vehicular jerk (Volatility 8). 

While the relationship between passing-level mean absolute deviance of vehicular jerk (volatility 

8) and crash frequency is statistically insignificant in fixed parameter model, the other volatility 

related factors are statistically significantly positively associated with crash frequency. The 

fixed-parameter model suggests that the associations between intersection-specific volatilities 

and crash frequency are fixed across all the intersections.  

 

However, the best-fit hierarchical random parameter Poisson log-normal suggests that the effects 

of intersection-specific volatilities on crash frequency are not fixed, and are normally distributed 

random parameters (Table 4.3). For instance, the intersection level volatility variable calculated 

based on two standard deviations threshold for acceleration/deceleration (volatility 2) is a 

normally distributed random parameter with a mean of 0.188 and standard deviation of 0.032 

(Table 4.3). This translates to a 1.25 percent increase, on average, in crash frequency with a one-

percent increase in intersection volatility calculated based on two standard deviations threshold 

for acceleration/deceleration (see elasticities for volatility 2 variable in Table 4.5). Likewise, a 

one-percent increase in passing-level mean absolute deviance of vehicular jerk (volatility 8) 
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increases crash frequency by 0.35 percent (see estimation results and elasticities in Table 4.3 and 

4.5). However, the effects vary across the sampled intersections with a mean of 0.414 and 

standard deviation of 0.047 (Table 4.3). Finally, volatility 4 (i.e., passing-level coefficient of 

variation of speed) is positively correlated with crash frequency – a one-percent increase in 

passing-level coefficient of variation of speed increases crash frequency by 0.25 percent. Also 

note that, for intersection with the highest passing-level coefficient of variation of speed (i.e., 

maximum value of volatility 4 variable equals 52.83 in Table 4.2), the crash frequency is 

observed to increase by 0.69% (see maximum elasticity in Table 4.5).  

 

To see if the relationships between intersection volatilities and crash frequency are significantly 

different for signalized intersections, Table 4.4 summarizes the results for signalized 

intersections only. In particular, among all the volatility related variables considered, volatility 2 

(Intersection-level: two standard deviations threshold for acceleration/deceleration) and volatility 

4 (Passing level: coefficient of variation of speed) are found to be positively correlated with 

crash frequency (Table 4.4). For instance, a one-percent increase in volatility 4 is associated with 

a 0.55% increase in crash frequency at signalized intersections (Table 4.5). However, the effects 

of this variable on crash frequency varies between 0.39% and 0.64% depending on the values of 

volatility 4 at signalized intersections (Table 4.5). Finally, volatility 2 variable that captures 

intersection volatility at passing level through coefficient of variation of speed is also positively 

correlated with crash frequency (Table 4.4). A one-percent increase in volatility 2 increases crash 

frequency at signalized intersections by 0.55% (Table 4.5). However, the maximum elasticity is 

around 0.64, suggesting that for the maximum value of volatility 2 variable, crash frequency can 

increase by 0.64%. This variable is normally distributed random parameter with mean of 0.075 
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and standard deviation of 0.045. As such, the effect of volatility 2 on crash frequency is positive 

for 95.2% of the signalized intersections and negative for the rest.  

 

4.6.2 Safety Effect of Traffic Exposure & Other Variables 

For traffic exposure related factors, the hierarchical random parameter Poisson log-normal model 

for all intersections suggests that a one percent increase in major road AADT and minor road 

AADT (in log scales) translate to 2.15% and 0.34% increase in crash frequencies respectively 

(Table 4.5). However, the parameter estimates for major road AADT are normally distributed 

random parameters suggesting that the effects of this variable on crash frequency varies across 

the sampled intersections. In terms of geometric factors, a signalized intersection and four leg 

intersection are both associated with significantly higher crash frequencies. For instance, 

referring to elasticities for hierarchical Poisson log-normal random parameter model in Table 

4.3, at signalized and four legged intersections, the crash frequencies increased by 52% and 26% 

respectively38. Again, the variable for signalized intersections is found to have normally 

distributed random parameters suggesting heterogeneity in the effects of this variable on crash 

frequencies at all intersections (Table 4.3).  

 

For signalized intersections (Table 4.4), a one-percent increase in major road AADT and minor 

road AADT (in log scales) translate to 1.75% and 0.36% increase in crash frequency respectively 

(Table 4.4 and 4.5). Likewise, at four legged intersection, the crash frequencies increased by 

28% (see elasticities for HRPP model for signalized intersection in Table 4.5). These findings are 

                                                 
38 For indicator variables, such as dummy variable for signalized intersection and four-legged intersection, the 

interpretation of elasticity is different (Washington et al., 2010). That is, the estimated elasticities quantify the 

change in crash frequency given the existence (indicator variable = 1) of specific condition (Washington et al., 

2010).  
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intuitive as greater exposure is generally associated with higher crash frequencies (Quddus et al., 

2001). Note that the parameter estimates and elasticities for traffic exposure factors (major), both 

for pooled and un-pooled model, vary significantly across the sampled intersections, suggesting 

significant heterogeneity in the effects of exposure-related factors (Table 4.5).  

 

Overall, as discussed above, several variables are found to have random parameters suggests that 

the effects of these variables vary across different intersections, and is not fixed/constant for all 

intersections. While the direction of effects is consistent among the fixed- and random-parameter 

models, the magnitudes (in some cases) vary widely. 

 

4.7 LIMITATIONS/FUTURE WORK 

 

This study used several vehicle speed, acceleration, and jerk based measures to quantify 

volatility at intersections. In future, it will be interesting to explore more measures such as 

steering angles for quantifying intersection-specific volatility. Given the connected vehicle data 

availability and the significant manual data collection and data mining efforts involved, this 

study analyzed a sample of 116 intersections. Thus, the results are dependent on the sample size 

and with availability of more data, the methodology should be extended. From a methodological 

perspective, this study examined the relationships between average number of crashes 

(irrespective of crash types) and intersection-specific volatility measures. However, recent 

studies have shown that different crash outcomes at roadway entities can exhibit significant 

dependencies (El-Basyouny and Sayed, 2009b, El-Basyouny and Sayed, 2011). 

Methodologically, taking the potential dependencies among correlated response outcomes can 

lead to more efficient parameter estimates (Wali et al., 2018a). In future, by collecting additional 
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data on crash types, the proposed methodology should be extended to a Bayesian multivariate 

modeling framework where relationships between different categories of crashes (such as fatal, 

serious, injury, and property-damage only) and intersection-specific volatility can be sought. 

That is, different crash types can be modeled simultaneously in order to capture the 

dependencies/correlations between different crash outcomes at intersections/segments (El-

Basyouny and Sayed, 2009b, El-Basyouny and Sayed, 2011, Barua et al., 2016, Ma et al., 2008, 

Barua et al., 2014). Such an extension would be relevant because the effects of driving volatility 

(and other factors) on fatal crashes can be expected to be different from the effects of volatility 

(and other factors) on PDO crash frequency. We also acknowledge that signal timing/cycle phase 

information is important for the analysis of safety performance at signalized intersections. 

However, the present study could not incorporate signal timing related variables as such data are 

not publicly available for the study area under consideration. Incorporating signal timing 

information in future efforts can help extract deeper insights. Finally, the present study 

considered microscopic driving data based volatility measures while several researchers have 

introduced other mature safety surrogates such as time to collision and post-encroachment time 

(Saunier et al., 2010, Tarko et al., 2009, Ismail et al., 2009, Ismail et al., 2010). These measures 

are important in the sense that it provides insights about driving behavior (for example 

acceleration/deceleration) immediately prior to involvement in a crash. While the volatility 

measures discussed in this study captures variations in speeds, acceleration/deceleration, and 

vehicular jerk, the volatilities cannot be linked to specific crashes given that the high resolution 

driving behavior and crash data are not necessarily for the same vehicles. This precludes analysis 

of investigating impacts of driving volatility in time to collision on key safety outcomes. 

However, with other recent advances in video analytic and naturalistic driving based data 
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streams, the role of human (driver) behavior or the volatility therein immediately prior to 

involvement in safety-critical events  can be better sought, e.g., see (Ismail et al., 2010, Wali et 

al., 2018e). 

 

4.8 CONCLUSIONS 

 

Driving behavior in general is considered a leading cause of intersection related traffic crashes. 

However, due to unavailability of real-world driving data, intersection safety performance 

evaluations are largely reactive where state-of-the-art methods are applied to analyze historical 

crash data. The emerging connected and automated vehicles (CAV) technology provides a 

promising opportunity for investigating intersection safety more from a proactive perspective.  

Driving volatility captures the extent of variations in instantaneous driving decisions when a 

vehicle is being driven. This study develops a fundamental understanding of microscopic driving 

volatility and how it relates to unsafe outcomes at intersections. The key research objectives are: 

 

1) To develop a methodology for quantifying driving volatility (magnitude and variations 

in instantaneous driving decisions) in CAV based Basic Safety Messages.  

2) To understand correlations between driving volatility and traffic crashes at specific 

intersections.  

3) To fully account for unobserved heterogeneity by developing full Bayesian hierarchical 

random parameter Poisson and Poisson log-normal models.  

 

To achieve the objectives, real-world connected vehicle data from the Safety Pilot Model 

Deployment (SPMD) in Ann Arbor, Michigan are used. Specifically, by using data mining 
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techniques, several intersection-specific volatility indices are created for 116 intersections in Ann 

Arbor, Michigan. Altogether, more than 230 million real-world Basic Safety Messages (BSMs) 

are processed and analyzed to quantify intersection volatility. Intersection-specific driving 

volatility indices are created from BSM data at two levels using aggregate intersection level data 

and trip/passing level data. To better quantify intersection-specific volatility, eight different 

measures are introduced to capture volatility in vehicle speeds, acceleration/deceleration, and 

vehicular jerk.  

 

For proactive intersection safety evaluation, the large-scale connected vehicle data is then 

manually linked to detailed intersection data containing crashes, traffic exposure, and other 

geometric features. Significant efforts went into data processing, collection, and linkage. By 

using the eight newly created volatility measures, descriptive analysis is performed and 

visualizations developed to observe the relationships between intersection volatility and 

historical crashes. As signalized intersections often experience higher crash frequencies, in-depth 

statistical analysis is then performed to quantify correlations between intersection volatility and 

traffic crashes, separately for all intersections and signalized intersections only.  

 

Given that the integrated CAV and inventory data is assembled manually, it is obvious not all 

factors that may influence crash frequency are observed. In presence of such unobserved factors, 

it may happen that any correlation that is established between driving volatility and crash 

frequency is not real and in fact is an outgrowth of some other factors that are not observed in the 

data. As such, owing to the presence of unobserved heterogeneity, hierarchical fixed- and 

random-parameter Poisson and Poisson log-normal models are estimated in Full Bayesian 



 

 

 

160 

 

context via Markov Chain Monte Carlo (MCMC) based Gibbs updates. Specifically, hierarchical 

random-parameter Poisson log-normal regression and hierarchical random-parameter Poisson 

regression models were observed to provide the best-fit for all intersections and signalized 

intersections respectively. Among the volatility, traffic exposure, and other factors tested, 

parameter estimates for several variables were found to be normally distributed random 

parameters, suggesting that the effects of explanatory factors on crash frequency vary 

significantly across the intersections.  

 

For all intersections, after controlling for traffic exposure, geometrics, and unobserved factors, 

the results show that a one-percent increase in intersection-level volatility calculated through two 

standard deviations threshold for acceleration/deceleration (volatility 2), passing level volatility 

captured through coefficient of variation of speed (volatility 4), and mean absolute deviance of 

vehicular jerk results in a 1.25%, 0.25%, and 0.35% increase in crash frequencies respectively. 

However, the relationships between driving volatility indices and crash frequency are 

significantly different for signalized intersections, i.e., a one-percent increase in coefficient of 

variation of speed at passing level (volatility 4) is associated with a 0.04% increase in crash 

frequency. Likewise, a one-percent increase in intersection-level volatility calculated through 

two standard deviations threshold for acceleration/deceleration increases crash frequency by 

0.55%. However, for a signalized intersection with the highest volatility, the crash frequency is 

observed to increase by 0.64%. This finding is important in the sense that increase in signalized 

intersection-specific volatility may result in more crashes. Also, for many intersections, it is 

found that observed crash frequency is lower but perhaps crashes are waiting to happen as 

instantaneous driving decisions are consistently more volatile at such intersections (Schneider et 
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al., 2004). For intersection safety management, such information is crucial as it can highlight 

intersection locations where behaviors of drivers may differ, compared to their behaviors at other 

intersection locations. Thus, safety managers may consider proactive countermeasures at such 

locations, e.g., providing proactive alerts and warnings to drivers through connected vehicle 

roadside equipment (RSE). The associations between other traffic exposure factors, geometric 

factors, and crash frequency are also quantified and discussed, and shows that greater traffic 

exposure is generally associated with higher crash frequencies. 
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CHAPTER 5 EXPLORING MICROSCOPIC DRIVING VOLATILITY IN 

NATURALISTIC DRIVING ENVIRONMENT PRIOR TO INVOLVEMENT IN SAFETY 

CRITICAL EVENTS  
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This chapter presents a modified versions of a research article by Behram Wali, Asad J. Khattak, 

and Thomas Karnowski. “Exploring Microscopic Driving Volatility in Naturalistic Driving 

Environment Prior to Involvement in Safety Critical Events.” The manuscript is currently under 

second-stage review in Accident Analysis and Prevention.  
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ABSTRACT 

 

The sequence of instantaneous driving decisions and its variations, known as driving volatility, 

prior to involvement in safety critical events can be a leading indicator of safety. This study 

extends the concept of driving volatility to specific normal and safety-critical events, thus named 

“event-based volatility.” The research issue is characterizing volatility in instantaneous driving 

decisions in longitudinal and lateral directions, and how it varies across drivers involved in 

normal driving, crash, and/or near-crash events. To explore the issue, a rigorous quasi-

experimental study design is adopted to help compare driving behaviors in normal vs unsafe 

outcomes. Using a unique real-world naturalistic driving database from the 2nd Strategic 

Highway Research Program (SHRP), a test set of 9,593 driving events featuring 2.2 million 

temporal samples of real-world driving are analyzed. This study features a plethora of kinematic 

sensors, video, and radar spatiotemporal data about vehicle movement and therefore offers the 

opportunity to initiate such exploration. By using information related to longitudinal and lateral 

accelerations and vehicular jerk, 24 different aggregate and segmented measures of driving 

volatility are proposed that captures variations in extreme instantaneous driving decisions. In 

doing so, careful attention is given to the issue of intentional vs. unintentional volatility. The 

volatility indices are then linked with safety critical events, crash propensity, and other event 

specific explanatory variables. Owing to the presence of unobserved heterogeneity and omitted 

variable bias, fixed- and random-parameter discrete choice models are developed that relate 

crash propensity to driving volatility and other factors. Statistically significant evidence is found 

that driver volatilities in near-crash and crash events are significantly greater than volatility in 

normal driving events. After controlling for traffic, roadway, and unobserved factors, the results 

suggest that greater intentional volatility increases the likelihood of both crash and near-crash 



 

 

 

165 

 

events. A one-unit increase in intentional volatility associated with positive vehicular jerk in 

longitudinal and lateral direction increases the probability of crash outcome by 5.21 and 8.91 

percentage points, respectively. Importantly, intentional volatility in longitudinal negative jerk 

(braking) has more negative consequences than intentional volatility in positive vehicular jerk. 

Compared to acceleration/deceleration, vehicular jerk can better characterize the volatility in 

microscopic instantaneous driving decisions prior to involvement in safety critical events. 

Finally, the magnitudes of correlations exhibit significant heterogeneity, and that accounting for 

the heterogeneous effects in the modeling framework can provide more reliable and accurate 

results. The study demonstrates the value of quasi-experimental study design and big data 

analytics for understanding extreme driving behaviors in safe vs. unsafe driving outcomes. 

 

5.1 INTRODUCTION 

 

The Global Status Report on Road Safety indicates that an estimated 1.25 million people 

annually die in road traffic crashes (RTCs) and approximately 50 million sustain injuries (WHO 

2015). This high toll of annual RTCs imposes substantial costs on our societies, with annual 

crash costs totaling to $240 billion within the United States (NHTSA 2015). Among other 

factors, driving behavior and/or human factors in general are considered a leading cause of RTCs 

(Dingus et al. 2006, Liu and Khattak 2016, FHWA 2017). Recent statistics suggest that more 

than 90 percent of crashes are influenced in a major way by driver behavior (FHWA 2017). 

Thus, for several decades researchers have attempted to understand the behavioral correlates of 

crash risk or crash propensity. For the most part, the analysis of behavioral factors correlated 

with crash propensity mainly builds upon questionnaire surveys and/or controlled experiments 

(Schneider et al. 2001, Schneider et al. 2004, Machin and Sankey 2008, Ivers et al. 2009, 
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Antonopoulos et al. 2011, Qu et al. 2014, Scott-Parker and Oviedo-Trespalacios 2017b). While 

analysis of such a nature is important for identifying driver-related factors associated with higher 

crash risk, it does not shed light on the actual driving tasks and/or decisions that typically 

precede drivers’ involvement in a crash (Kim et al. 2016). As such, it is crucial to gain insights 

regarding the sequence of microscopic instantaneous driving decisions (e.g., 

acceleration/deceleration) preceding drivers’ involvement in a near-crash or crash situation. 

However, an analysis of such a nature was not possible until very recent mainly due to data 

unavailability.  

 

The rapid technological advancements in recent years have enabled collection of huge amounts 

of spatiotemporal data about vehicle and human movement. With recent innovations ranging 

from realization of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) technologies 

such as Dedicated Short Range Communication (DSRC) and WI-FI, to continuous video and 

radar surveillance, the collection of countless terabytes of real-world driving data is now a reality 

(Campbell 2012, Henclewood 2014). The generated large-scale empirical data by such 

technologies has significant potential in facilitating deeper understanding of instantaneous 

driving decisions prior to occurrence of unsafe outcomes, such as crashes (Kamrani et al., 2017). 

Relevant in this regard is the concept of “driving volatility” that captures the extent of variations 

in driving, especially hard accelerations/braking and jerky maneuvers (Khattak et al., 2015, 

Wang et al., 2015, Liu and Khattak, 2016b). Broadly, through monitoring and analysis of real-

world driving data, proactive safety approaches can be formulated by giving warnings and alerts 

to drivers and which can reduce such volatility potentially improving safety.  
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With these forethoughts in mind, the main objective of this study is to investigate correlations 

between driving volatility and crash propensity. Crash propensity is usually defined as the 

tendency of a driver to get involve in an unsafe outcome, and which is mostly defined as a crash 

(Abdel-Aty and Pande 2005, Christoforou et al. 2011). However, an important goal within this 

broader unsafe outcome perspective is to identify and analyze situations resulting in near-crashes 

(or near misses), as such “close calls” may foreshadow actual future crashes. Thus, in this study 

an unsafe outcome is defined as a crash or near-crash event. To explore the issue, a tight quasi-

experimental study design is adopted to help compare driving behaviors in normal vs unsafe 

outcomes. Such a study design is crucial to understanding the microscopic extreme driving 

behaviors in unsafe events and normal driving events.  As such, the study builds upon a unique 

Naturalistic Driving Study (NDS) database of thousands of driving events in which a driver was 

involved in a safe driving event (baseline or normal event), crash event, or a near-crash event. 

For all such driving events, large-scale microscopic instantaneous driving decision data prior to 

involvement in both safe and unsafe outcomes are analyzed and volatility indices created based 

on different driving performance measures. The volatility indices are then linked with crash 

propensity, event specific variables such as drivers’ pre-event maneuvers and behaviors, 

secondary tasks, roadway and traffic flow related factors. Both simple and advanced statistical 

methods are employed to generate new knowledge critical to formulation of proactive warnings 

and alerts in case an unsafe outcome is anticipated. From a methodological perspective, discrete 

choice models are estimated for modeling crash propensity as a function of several variables 

including driving volatility, and which accounts for important issues of unobserved heterogeneity 

and omitted variable bias (discussed later in detail). 
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5.2 LITERATURE REVIEW 

 

5.2.1 Crash frequency, crash rate and associated factors 

At an aggregate level, a broad spectrum of studies have established relationships between crash 

frequency (or crash rates) and traffic related factors (Ivan et al. 2000, Martin 2002, Qin et al. 

2004, Anastasopoulos et al. 2008, Ma et al. 2017, Sarker et al. 2017), roadway factors (Qin et al. 

2004, Anastasopoulos et al. 2008, Dong et al. 2014, Ma et al. 2017), built-environment factors 

(Ivan et al. 2000, Lee et al. 2014, Chen 2015),  weather related factors (Anastasopoulos et al. 

2008, Dong et al. 2014, Hassan et al. 2017), and driver behavior (Lee et al. 2014, Hassan et al. 

2017).  Among other factors, driver behavior (or risky driving) is concluded to be the main 

contributing factor for crashes (Neyens and Boyle 2007, Boyle et al. 2008, Lee and Abdel-Aty 

2008, Yan et al. 2008, Lee et al. 2014, Hassan et al. 2017). As a surrogate of driving behavior, 

aggregate measures such as residence characteristics of drivers, socio-economic and age-related 

factors, and/or ticket violations are usually used to relate driving behavior with crash frequency 

(Ivan et al. 2000, Weng and Meng 2012, Lee et al. 2014, Mitchell et al. 2014, Liu et al. 2015b, 

Hassan et al. 2017). Traditional police crash report forms do not typically include detailed 

information about driving behavior related factors. As such, studies have also used self-reported 

questionnaire surveys to investigate (or infer) links between driving behavior and crash risk 

(Mannering 2009, Tronsmoen 2010, Smorti and Guarnieri 2014, Hassan et al. 2017, Scott-Parker 

and Oviedo-Trespalacios 2017a). Different driver related factors (age, gender, nationality), 

vehicle types, mobile-phone use, drink driving, risk perception, and safety attitudes are found 

correlated with crash involvement (Tronsmoen 2010, Hassan et al. 2017, Scott-Parker and 

Oviedo-Trespalacios 2017a). 
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 As opposed to using crashes as a safety tool, near-crash traffic events are usually acknowledged 

but not used as safety tools. This is primarily due to the degree of subjectivity involved in 

identification of such events (Hayward 1972). However, for drawing a complete picture, it is 

important to analyze situations that may result in near-crashes as such events are typically 

precursors to actual crashes.  Collectively, while the previous studies provided information about 

important variables related to crash occurrence and/or crash rates, crucial information is missing 

regarding pre-safety critical vehicle maneuvers or operation. An understanding of the actual 

driving mechanism related with occurrence of crash or near-crash event is crucial for designing 

actionable proactive behavioral countermeasures. 

 

5.2.2 Real-world driving data and concept of driving volatility 

Emerging technologies such as vehicle-to-vehicle and vehicle-to-infrastructure communication, 

and naturalistic driving studies facilitate the collection of high frequency real-world driving data. 

Towards this end, recent studies utilized real-world driving data integrated with sensor and radar 

technologies to propose the concept of “driving volatility”, which is a measure of driving 

practice for characterizing instantaneous driving decisions, importantly extreme driving 

behaviors, and the dynamics of regimes in a typical driving profile (Khattak and Wali, 2017)(Liu 

et al. 2015a, Wang et al. 2015). Specifically, such sensing captures the extent of variations in 

driving, especially hard accelerations/braking and jerky maneuvers (Khattak and Wali, 

2017)(Khattak et al. 2015, Wang et al. 2015)(Liu et al. 2015a, Liu and Khattak 2016). The 

fundamental idea is to capture the magnitudes and amount of variations in driving decisions as 

larger variations (or heterogeneity) in microscopic decisions by the driver cannot only influence 

their own safety but also the operations of sorrounding traffic. For instance, a recent study 
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developed a fundamental understanding of instantaneous driving decisions, and to distinguish 

normal from anomalous driving (Khattak and Wali, 2017). By conceptualizing microscopic 

driving decisions into distinct yet unobserved regimes, the focus was to quantify volatility in 

each regime and how driving regime allocation can be probabilistically mapped to the 

surrounding traffic contexts (Khattak and Wali, 2017). A dynamic Markov regime switching 

methodology was presented to predict what a driver will do in short term in a connected vehicles 

environment, and which is fundamental to the development of driving feedback devices and 

control assist systems (Khattak and Wali, 2017). Compared to traditional behavioral measures 

(such as age, education, gender, socio-economics), the concept of individual level driving 

volatility provides personalized and actionable information for developing driving feedback 

devices, warning and control assists systems (Khattak and Wali, 2017)(Wang et al. 2015, Liu and 

Khattak 2016). 

 

5.2.3 Driving volatility and Unsafe Outcomes 

While the afore-mentioned studies characterized driving practices by using rigorous data analytic 

methodologies (Liu et al. 2015a, Wang et al. 2015, Liu and Khattak 2016)(Khattak and Wali, 

2017), the volatility was not linked with unsafe outcomes such as crashes. In this regard, recent 

studies by Kamrani et al. (2017) and Wali et al. (2018) extended the concept of driving volatility 

to specific locations (location-based volatility) and demonstrated how high resolution connected 

vehicles based driving data can be linked with historical crashes for designing proactive safety 

management tools (Kamrani et al., 2017, Wali et al., 2018d). Furthermore, in simulation-assisted 

frequentist as well as in Full-Bayesian setup, the studies demonstrated that the relationship 

between driving volatility and crashes vary across different locations (unobserved 
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heterogeneity), and that it is necessary to control for omitted variables while establishing 

relationships between driving volatility and crash outcomes (Kamrani et al., 2017, Wali et al., 

2018d). Furthermore, different statistical measures of location (intersection) specific volatilities 

were proposed to quantify location-based volatilities in connected (instrumented) vehicles 

environment (Wali et al., 2018d). 

 

In similar work, Kim et al. (2016) conducted an exploratory study to analyze the association 

between rear-end crash propensity and micro-scale driving behavior (Kim et al. 2016). Simple 

correlational statistics were studied and spatial distributions explored (Kim et al. 2016). All the 

three studies concluded that hard deceleration rates are associated with rear-end crashes on 

freeway ramps (Kim et al. 2016) and total crashes at signalized intersections (Kamrani et al., 

2017, Wali et al., 2018d), and innovative proactive safety strategies were discussed (Kamrani et 

al., 2017, Kim et al., 2016, Wali et al., 2018d). 

 

5.2.4 Research Gap 

The aforementioned studies contributed by providing data analytic and Bayesian statistical 

methodologies to link large-scale driving behavior data with historical crashes. However, 

important research gaps exist. First, these studies were aggregated level in the sense that location 

specific (intersections or freeway on/off ramps) driving behavior data were used to explain 

historical crashes at such locations (Kamrani et al., 2017, Kim et al., 2016, Wali et al., 2018d). 

Thus, insights regarding how individual driver’s instantaneous driving decisions can be related to 

his/her crash involvement cannot be obtained. Second, due to data unavailability, short duration 

of high frequency driving data (two months’ data in (Kamrani et al., 2017, Kim et al., 2016) and 
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three months’ data in (Kim et al. 2016)) were used to explain multi-year crashes. Third, only 

crashes were used as tools for characterizing safety and near-crashes were not considered 

(Kamrani et al., 2017, Kim et al., 2016, Wali et al., 2018d). However, an important goal within 

this broader unsafe outcome perspective should be to identify and analyze situations resulting in 

near-crashes (or near misses), and which may be considered forerunners to actual future crashes. 

Given these research gaps, this study extends the concept of driving volatility to specific normal 

and safety-critical events, thus named “event-based volatility.”   

 

Finally, the authors believe that methodological issues related to unobserved heterogeneity and 

omitted variable bias should be properly accounted for in analyses of such a nature. That is, it is 

important to control for unobserved factors that may influence unsafe outcomes but are not 

observed in data. If such unobserved factors could be included in a model, the correlations 

between driving volatility and unsafe outcomes can change, e.g., the magnitude or statistical 

significance of the relationship can change. The study by (Kim et al. 2016) was descriptive in 

nature and did not account for unobserved heterogeneity. 

 

5.2.5 Research Objective and Contribution 

Given the prevalent gaps in the literature, the objectives of this study are: 

 To characterize volatility in instantaneous driving decisions in normal driving events, 

crash events, and near-crash events.  

 To examine how volatility in instantaneous driving decision vary across drivers involved 

in normal, crash, and/or near-crash events.  
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 To understand correlations between driving volatility (intentional and unintentional) and 

crash propensity after controlling for other factors, unobserved heterogeneity and omitted 

variable bias.  

These objectives seek to gain a fundamental understanding of instantaneous short-term driving 

decisions prior to involvement in unsafe outcomes, and therefore reveal how we can map driving 

volatility to drivers’ involvement in different possible safety outcomes, i.e., concept of “event-

based volatility” is introduced. We define it as event-based volatility because the driving 

volatility indices provide insights about microscopic driving decisions in different possible 

safety-critical events. Crash propensity is defined as likelihood of drivers’ involvement in crash- 

or near-crash events, compared to normal (baseline) driving events. Such an analysis is critical 

for designing proactive behavioral countermeasures as it can highlight moments of volatile 

(potentially unsafe) instantaneous driving decisions prior to involvement in an unsafe outcome.   

 

For thousands of driving events in naturalistic driving studies, large-scale microscopic 

instantaneous driving decision data prior to involvement in both safe and unsafe outcomes are 

analyzed and volatility indices created based on different driving performance measures. Careful 

attention is given to the issue of intentional vs. unintentional volatility (discussed later in detail). 

The volatility indices are then linked with crash propensity, event specific variables such as 

drivers’ pre-event maneuvers and behaviors, secondary tasks, roadway and traffic flow related 

factors. Simple correlational and ANOVA analysis is first conducted to spot statistically 

significant differences (if any) among driving volatilities in different safety events. Next, 

advanced statistical methods are employed to relate different driving volatility measures to crash 

propensity to generate new knowledge critical to formulation of proactive warnings and alerts in 
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case an unsafe outcome is anticipated. Given the important methodological concerns of 

unobserved heterogeneity and omitted variable bias (Kamrani et al., 2017, Lord and Mannering, 

2010, Savolainen et al., 2011), fixed- and random-parameter discrete choice models are 

developed to reach reliable conclusions. 

 

5.3 METHODOLOGY 

 

5.3.1 Conceptual Framework 

To understand driving volatility prior to involvement in safety critical events, detailed 

microscopic data on instantaneous driving decisions are needed (Liu and Khattak 2016). The 

recently concluded SHRP2 Naturalistic Driving Study provides relevant data (TRB 2013). Figure 

5.1 presents a conceptual framework that describes the overall study structure.  The “Event 

Detail Table” in the framework consists of a table of critical safety events and baseline events, 

ranging from 20 seconds long to 30 seconds long.  Specifically, 20 seconds of microscopic 

driving data are available for baseline events, whereas, 30 seconds data are available for safety-

critical events (such as near-crashes and crashes). These events have been manually reviewed 

and categorized into a set of 74 descriptive variables (VTTI Insight Web Site).  Each event is 

also accompanied by a set of measurements from the NDS sensors, sampled at 10 frames / 

second.  The EDT used in this work was obtained in September 2014.      
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Figure 5.1 Conceptual framework 

 

By using large-scale data analytic techniques, a unique aspect of the current study is to combine 

traditional and emerging data sources in a meaningful way critical to development of proactive 

safety tools and behavioral countermeasures. In this study, both safety critical events (crash/near-

crash) and baseline events (normal driving) are considered39. This is important because 

understanding driving behavior in safety critical events vis-à-vis normal driving events can help 

determine meaningful behavioral differences. By using several performance measures, the 

magnitudes and extent of variations (termed as driving volatility) in driver’s performance prior to 

involvement in safety critical and/or baseline events are quantified (Figure 5.1). With real-world 

driving data based volatility indices, proactive behavioral countermeasures can be planned for 

drivers that are consistently more volatile. As a next step, the microscopic driving volatility 

                                                 
39 Crash is defined as any contact that the subject instrumented vehicle has with an object (moving or fixed) at any 

speed in which kinetic energy is measurably transferred or dissipated (Hankey et al., 2016). Whereas, SHRP2 NDS 

defines near-crash as any circumstance that requires a rapid evasive maneuver by the subject vehicle, or any other 

vehicle, pedestrian, cyclist, or animal, to avoid a crash (Hankey et al., 2016). Baseline events are samples of “normal” 

driving and the goal is to provide an estimate of what constitutes “normal driving” and/or “typical driver behavior” 

(Hankey et al., 2016). Further details are discussed in later sections.  
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information is then linked with data in the event detail table that provides event specific data 

such as pre-crash maneuvers, road inventory, weather factors, and traffic factors. By using 

simple and advanced statistical methods, correlations between driving volatility and crash 

propensity are then explored. We hypothesis a positive correlation between driving volatility and 

crash propensity. Any correlation, if exists, can shed light on microscopic driving decisions, and 

how such decisions influence roadway safety (Figure 5.1).   

 

5.3.2 Data 

Data from an on-going national Naturalistic Driving Study conducted as part of the 2nd Strategic 

Highway Research Program (SHRP) were used in this study (TRB 2013). In this largest 

naturalistic driving study performed to date, the driving behaviors of approximately 3,400 

participant drivers were recorded with over 4,300 years of naturalistic driving data collected 

between 2010 and 2013 (Hankey et al. 2016). The study data was collected from six naturalistic 

driving sites around the United States, with largest data collection sites in New York, Tampa, 

Seattle, Washington, Florida, and Buffalo (Hankey et al. 2016). The study used approximately 

3,300 participant vehicles (TRB 2013, Hankey et al. 2016), using a data acquisition system 

(DAS) that collected four video views (driver’s face, driver’s hand, forward roadway, and rear 

roadway), vehicle network and status information (speed, brake, acceleration), and information 

from additional sensors networked with the DAS (e.g., accelerometers) (TRB 2013).  

Out of the many data categories collected in the SHRP 2 project, the data used in this study are 

“event data” and “continuous data”.  Event data provides detailed information regarding the 

different safety events in which a participant driver was involved. A notable feature of the SHRP 

2 NDS data is the inclusion of three categories designated as events: crash, near-crash, and 
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baseline events. Information about crash and near-crash events can provide richer estimates of 

prevalence and risk from different driver behaviors, roadway characteristics, and environmental 

conditions, whereas, baseline events are necessary for comparison purposes (TRB 2013). 

Following (Hankey et al. 2016), the definitions of the three event types are provided for 

reference: 

 Crash event: “Any contact that the subject vehicle has with an object, either moving or 

fixed, at any speed in which kinetic energy is measurably transferred or dissipated is 

considered a crash. This also includes non-premeditated departures of the roadway where 

at least one tire leaves the paved or intended travel surface of the road, as well as 

instances where the subject vehicle strikes another vehicle, roadside barrier, pedestrian, 

cyclist, animal, or object on or off the roadway.” (Hankey et al. 2016). 

 Near-Crash event: “Any circumstance that requires a rapid evasive maneuver by the 

subject vehicle, or any other vehicle, pedestrian, cyclist, or animal, to avoid a crash is 

considered a near-crash. A rapid evasive maneuver is defined as steering, braking, 

accelerating, or any combination of control inputs.” (Hankey et al. 2016).  

 Baseline events: Baseline events are samples of “normal” driving and the goal is to 

provide an estimate of what constitutes “normal driving” and/or “typical driver 

behavior”. 

 

A case-cohort type sampling design is used for selection of baseline events where a random 

sampling scheme was conducted stratified by participant and proportion of time vehicle was 

driven. Proportion of time driven is defined as to include only vehicle speeds above 5 mph so as 

to eliminate the effect of long stopping times, and to focus on time periods where the vehicle was 
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actually at risk of a crash or near-crash (Hankey et al. 2016).  Regardless of whether involved in 

a crash or near-crash, all participants are included in the sample for baseline events to ensure that 

a minimum of one baseline event is included for each driver. Further details regarding the 

sampling design can be found in Hankey et al. (2016) (Hankey et al. 2016). The combination of 

crashes and near-crashes are referred to as safety-critical events (SCEs). Regarding identification 

of SCEs, SHRP 2 NDS used multiple methods such as, 1) Data collection site report, 2) 

Automatic Crash Notification (ACN), 3) Critical Incident (CI) button, 4) Analyst identified, and 

5) Trigger execution. For example, the most systematic approaching to identifying an SCE was 

the method of trigger execution, which included post hoc processing of incoming data via 

custom algorithms called “triggers.” These algorithms are characterized by different kinematic 

and behavioral signatures that have a highly probability of being present during specific SCEs. 

The SHRP 2 NDS used different thresholds based on project resources (as detailed in (Hankey et 

al., 2016)). Among many of other trigger types, longitudinal deceleration and lateral acceleration 

were also used. For instance, the initial trigger for lateral acceleration was specified if the lateral 

acceleration was greater than or equal to 0.75 g or less than or equal to -0.75g, and that this 

threshold was exceeded for at least 0.2 seconds. For details about other trigger types, see 

(Jovanis et al., 2011, Hankey et al., 2016). Finally, once a SCE was identified through trigger 

execution method, video verification was then used to determine if an SCE occurred. Details 

about other methods used for identifying SCEs can be found in (Hankey et al., 2016). As can be 

seen, all the aforementioned techniques used in SHRP 2 NDS for identification of SCEs are 

rigorous. On top of that, the fact that majority of the SCEs identified through any of the 

aforementioned methods were video verified at the end further increases our confidence in the 

data.  
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A total of 9,593 driving events are considered in this study, out of which 7,589 are baseline, 673 

are crashes, and 1295 are near-crash events. Note that the term “event” does not imply “trips”. A 

participant along a single trip can have several events, e.g., baseline, crash, and/or near-crash. 

The 9,593 events involve 1580 unique participants with some participants appearing more than 

once (i.e., involvement in more than one safety critical events). For each of the three event types, 

time-series data on vehicle motion (continuous data) is provided, i.e., 30 seconds instantaneous 

driving data (frequency of 10 Hz) for safety critical events (crashes and near-crashes) and 20 

seconds instantaneous driving data with a frequency of 10 Hz for baseline events (Hankey et al. 

2016). The time-series data contains information about longitudinal and lateral accelerations, 

speeds, gas pedal and steering wheel position, and wiper status.  

 

As such, a total of 2.2 million records of real-world driving are analyzed in this study. By using 

information related to longitudinal and lateral accelerations and vehicular jerk, 24 different 

measures of driving volatility are calculated using the methods described next (Table 5.1). 

Finally, the event table provides detailed information on pre-incident maneuvers40, legality of 

maneuvers, driver behavior, secondary tasks41, start and end times, if applicable, of first, second, 

and third secondary events. Also included in the data is information about front-seat and rear-

seat passengers, intersection and roadway type indicators, and traffic flow related factors. The 

                                                 
40 For Baseline events, this is the driving maneuver or action that the driver is engaged in for the last 2-6 seconds 

prior to the baseline anchor point (the point in video where the 20 seconds baseline driving data starts). 

41 Observable driver engagement in any of secondary tasks, and which begins at any point during the 5 seconds prior 

to the event start (crash, near-crash) through the end of the event (TRB, 2013). Secondary tasks primarily refer to 

distractions related to non-driving related glances away from the direction of vehicle movement (TRB, 2013). Some 

examples include radio adjustments, seat-belt adjustments etc. For Baselines, secondary tasks are coded for the last 

5-6 seconds of the baseline epoch, which includes 5 seconds prior to baseline event start through one second after 

(to the end of the baseline). For further details, refer to (TRB, 2013). 
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detailed event data are finally linked with the event-specific volatility indices for subsequent 

analyses. 

 

Table 5.1 Different Volatility Measures Considered In this Study 

Direction 

Performance 

Measure 

Entire 30-

seconds data1 

First 20-

seconds 

data2 

First 25-

seconds data3 

Longitudinal 

Direction 

Positive vehicular jerk    

Negative vehicular 

jerk    

Acceleration    

Deceleration    

Lateral Direction 

Positive vehicular jerk    

Negative vehicular 

jerk    

Acceleration    

Deceleration    

Notes: (1) Entire time series data, i.e., 20-seconds for baseline and 30-seconds for crash/near-crash 

events; (2) Of the 30-seconds data, the initial 20 seconds data are used while the 10 seconds data 

immediately prior to crash/near-crash are not used; (3) The initial 25 seconds data are used while the 5 

seconds data immediately prior to crash/near-crash are not used.  

 

5.3.3 Components of Volatility 

Figure 5.2 shows a 30-seconds longitudinal and lateral acceleration/deceleration (vehicular jerk) 

profiles prior to involvement in a crash event. By using large-scale data analytic techniques, 

driving volatility can be characterized for each of the events (i.e., baseline, crash, or near-crash 

events). Broadly speaking, the volatility indices for each event can be regarded as microscopic 

measures of driving performance (or erratic behavior) in normal or safety-critical events. The 

driving volatility indices developed using the entire 30-seconds data (for crash and near-crash 

events) can shed light on microscopic driving decisions that the driver undertook prior to 

involvement in safety-critical events.  
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Figure 5.2 Profiles of instantaneous driving decisions prior to involvement in a sample crash 

event 

Note: First portion of series in pink background indicate actual driving behavior and second 

portion of series in light green background may indicate driving decisions due to situational 

factors – see text for explanation. 

 

 

 

 

 

 



 

 

 

182 

 

With real-world driving data based volatility indices (Figure 5.2), proactive behavioral 

countermeasures can be planned for drivers that are consistently more volatile. 

 

However, as explained in Wali et al. (2018), using the entire 30-seconds driving data for crash 

and near-crash events aggregates the different components of volatility in instantaneous driving 

decisions prior to unsafe outcomes (Wali et al., 2018e). For instance, Figure 5.2 illustrates the 

microscopic driving decisions in longitudinal and lateral direction prior to a crash event. 

However, in case of crash and near-crash events, the series can be divided into two series, where 

the first portion of the series will indicate the driver’s speed choice (or acceleration, vehicular 

jerk) regardless of the event outcome, while the second portion of the series would indicate the 

“adjustments” or drivers’ reaction to the event. That is, the volatility in the first component of the 

series is likely to reflect the actual driver behavior, and can be regarded as “intentional volatility” 

by the driver, i.e., due to aggressive self-driving when the driver is in control. As shown in 

Figure 5.2, the intentional volatility may be reflected in instantaneous driving data 20 to 30 

seconds before the crash/near-crash (see the first part of the profile in Figure 5.2 – indicated in 

pink background). Whereas, the second component may reflect “unintentional volatility” in the 

sense that the driver undertook evasive maneuvers to avoid the crash or near-crash event, or lost 

the control. The unintentional volatility can be reflected in driving data immediately before the 

unsafe outcome (such as 5 to 10 seconds before the crash/near-crash event), as highlighted in 

light green background in Figure 5.2. We call it “unintentional volatility” as the driver may have 

already anticipated the crash/near-crash in this case and is undertaking preventive measures to 

avoid the crash, i.e., evasive maneuvers. Also, the volatility 5 to 10 seconds before the crash is 

likely to contain volatility due to loss of control before the crash (Wali et al., 2018e).  
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The fundamental objective of this study is to explore the links between driving volatility and 

crash propensity. As is evident, combining the two sources of volatility (intentional vs. 

unintentional) to explain the unsafe outcomes can lead to bias due to reverse causation, i.e., the 

volatility measures using 30-seconds data will not only reflect the actual driving behavior but 

also volatile driving behaviors due to risky situations/external events. Conversely, by 

aggregating the different components of volatility, evasive maneuvers that allowed a driver to 

avoid a crash would also be interpreted as increasing volatility. In this case, high volatility may 

then be associated with near-miss outcomes, again not due to driver behavior in general but due 

to a driver’s reaction to unobserved situational variables. In this case, the first portion of the time 

series, i.e., intentional volatility can be used to explain the occurrence of unsafe outcomes (Wali 

et al., 2018e). As illustrated in Figure 5.2, much of this bias may be eliminated by censoring data 

used to calculate different volatility measures in the time period immediately before a crash or 

near-crash outcome occurs; i.e., censoring to remove the influence of driver reactions 

immediately prior to a crash from the volatility measures while retaining volatility derived from 

driver behavior in the seconds leading up to, but not immediately before, a crash or near-rash 

event. As such, we also consider generating segmented volatility indices based on different time 

bins, and which can separate out how volatility in time to crash (or near-crash) relates to crash 

propensity (Figure 5.2). 

 

5.3.4 Calculation of Volatility 

Driving volatility captures the extent of variations in driving, especially hard 

accelerations/braking and jerky maneuvers (Wali et al., 2018d, Wali et al., 2018e, Khattak and 

Wali, 2017, Khattak et al., 2015, Kamrani et al., 2017). Different instantaneous driving 
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performance measures such as vehicle speeds, accelerations/decelerations, and/or steering angles 

can be used for estimation of volatility indices in longitudinal directions (Quddus 2013, Kim et 

al. 2016, Liu et al. 2016, Liu and Khattak 2016). For instance, acceleration/deceleration based 

thresholds in connected vehicle environment are used for quantifying volatility in instantaneous 

driving decisions (Kamrani et al., 2017, Liu and Khattak, 2016b, Wali et al., 2018d). Also, 

deceleration and acceleration profiles differ with larger variation observed in deceleration (Kim 

et al., 2016, Kamrani et al., 2017, Wali et al., 2018d). As such, separate volatility measures are 

usually defined for acceleration and deceleration (Kamrani et al., 2017, Liu and Khattak, 2016b, 

Wali et al., 2018d). Another important driving decision is in the lateral dimension, e.g., lane 

change decisions. Larger volatility in lateral dimension may also be associated with unsafe 

outcomes (Wali et al., 2018d). For instance, Wali et al. (2018) used both longitudinal and lateral 

accelerations to better characterize driving volatility in time to collision and its relationship with 

injury outcomes in a naturalistic driving environment (Wali et al., 2018d).  

 

Another measure recently introduced in the literature for characterizing driving volatility is 

vehicular jerk (Wali et al., 2018d)(Wang et al. 2015). Vehicle jerk is basically defined as the rate 

of change of vehicle acceleration with respect to time. Compared to accelerations/decelerations, 

vehicular jerk represents drivers’ decisions to change marginal rate of acceleration or 

deceleration, and may better characterize driving volatility in instantaneous driving decisions 

(Wali et al., 2018d). In relevance to the current study, Feng et al. (2017) concluded the better 

potential of longitudinal vehicular jerk to identify “aggressive” drivers (Feng et al. 2017). 

However, vehicular jerk measures in lateral direction are not widely used (Wali et al., 2018d).  
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To fully characterize volatility in instantaneous driving decisions, we use both acceleration and 

vehicular jerk based performance measures (Figure 5.2). As deceleration profiles usually have 

higher variations (Kamrani et al., 2017), separate volatility measures for acceleration and 

deceleration are used. Likewise, separate volatility indices are generated for positive and 

negative jerk values. While doing so, both longitudinal and lateral dimensions are considered in 

calculation of volatility prior to involvement in safety critical events, and which can better 

characterize the complex mechanism of instantaneous driving decisions in longitudinal and 

lateral directions (Figure 5.3). Figure 5.3 illustrates the methodology for characterizing driving 

volatility. For the sake of completeness, the formulae for velocity, acceleration, and vehicular 

jerk are shown in Equations 5.1-5.4: 

𝑟 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 Equation 5.1 

 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝑣 =  
𝜕𝑟

𝜕𝑡
 

Equation 5.2 

 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑎 =  
𝜕𝑣

𝜕𝑡
=

𝜕2𝑟

𝜕2𝑡
 

Equation 5.3 

 

𝑉𝑒ℎ𝑖𝑐𝑢𝑙𝑎𝑟 𝐽𝑒𝑟𝑘 = 𝑗 =  
𝜕𝑎

𝜕𝑡
=

𝜕2𝑣

𝜕2𝑡
=

𝜕3𝑟

𝜕3𝑡
 

Equation 5.4 

 

 

Where: 
∂

∂t
 indicates derivative of a performance measure (velocity, acceleration, etc.) with 

respect to time, and ∂t is a small change in time "t" (set to 0.1 seconds in our case).  
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Figure 5.3 Methodology for characterizing driving volatility prior to involvement in safety 

critical events.  

 

Specifically, the on-board data acquisition systems installed in vehicles provide high-resolution 

motion data at a frequency of 10 Hz (TRB, 2013). Instantaneous longitudinal and lateral 

acceleration profiles are recorded for the entire trip. However, compared to drivers’ performance 

throughout the entire trip, instantaneous driving decisions immediately prior to involvement in 

safety critical events are more relevant and crucial. As such, the EDT provides instantaneous 

motion data, 30 seconds for every safety critical event (crash/near-crash) and 20 seconds for 

every baseline event (TRB, 2013). The 30-second driving behavior data can be interpreted as 

driving decisions undertaken immediately before the occurrence of crash or near-crash event.  
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A total of 2.2 million observations are used in this study for calculation of volatility indices for 

9574 driving events (discussed later in detail). As shown in Figure 5.3, for each event, 

acceleration and deceleration values are separated, and mean and standard deviations calculated 

for each. As a measure of volatility, coefficient of variation is used in the present study42 , i.e., 

the standard deviation(s) are then divided by mean values to get an estimate of relative 

variability in instantaneous driving decisions across different events. Similar procedure is 

repeated for acceleration/decelerations in lateral direction, and for vehicular jerk (both positive 

and negative) in longitudinal and lateral directions (Figure 5.3). Finally, considering the 

discussion on different components of volatility (see section 5.3.3), 24 different volatility 

measures are considered in this study based on the whether the entire 30 seconds, starting 20 

seconds, or 25 seconds data are used  (Table 5.1).    

 

Note that the SHRP 2 NDS provides 30-seconds microscopic vehicle trajectory data for each of 

the safety-critical events (crashes/near-crashes), and which were used in this study. In addition, 

29-30 seconds videos are also available for majority of the safety-critical event. However, note 

that the safety-critical event does not need to occur exactly at the end of the 30-seconds 

trajectory data or at the end of the corresponding video files.  In other words, the safety-critical 

event can take place before the end of the event data/video file, e.g., after 20 seconds while the 

event data is provided for the entire 30-seconds. Using the entire 30-seconds data in this case 

will distort the results, especially with respect to intentional vs. unintentional volatility. While it 

is not practical to manually check all of the video files for safety-critical events (as there are 

                                                 
42 Kamrani et al. (2017) introduced coefficient of variation as a measure for characterizing driving volatility in 

connected vehicles environment. Compared to standard deviation or variance, coefficient of variation is scale in-

sensitive and this property allows meaningful comparisons between the volatility in instantaneous driving decisions 

in different safety critical and baseline events (Kamrani et al., 2017).  



 

 

 

188 

 

thousands of events), we manually checked the video files of a completely random sample of 100 

crashes to exactly record the time at which the event occurred during the 30 seconds. For the 

decision of using all the 30 seconds data to be reasonable, we would expect the distribution of 

the event occurrence times to be left-skewed, i.e., majority of the event occurrence times would 

be expected to occur at the end of the trajectory/video files. Out of the 100 randomly sampled 

crashes, videos were available for 59 of them. For these 59 crashes, the video duration was 29 

seconds for all except two crashes (16 seconds for one and 13 seconds for the other). After 

extracting the event (crash) occurrence time from these 59 videos, we conducted a descriptive 

analysis to see the distribution of the data. The resulting distribution of event occurrence time (in 

seconds) was highly skewed to the left with a skewness parameter of -1.92 (skewness of less 

than -1 indicates heavily skewed distribution to the left) and kurtosis parameter of 10.887 

(kurtosis value for a normal distribution is exactly 3). The mean event occurrence time was 24.70 

seconds with a small standard deviation of 2.39 seconds. This analysis highlights that the 

decision to use the entire trajectory data for calculation of intentional vs. unintentional volatilities 

is reasonable and the un-intentional volatility indices appropriate. However, out of the 59 crash 

events, we did find two shorter duration videos of 16 and 13 seconds for two crash events 

respectively. That is, 2% of the crashes in the sample may be like these if we have the event 

videos for all of them. Strictly speaking, this may also imply that we may not have some creep 

from unintentional volatility due to the crash. However, the extent of this would be low given 

that only 2% of the cases had shorter durations. 
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5.3.5 Statistical Models 

Once the event specific volatilities (eight different volatility measures) are calculated for each 

event, the correlations between crash propensity and driving volatility are explored. Appropriate 

statistical models can shed light on microscopic driving decisions i.e., driving volatility, and how 

such decisions may be related to involvement in safety critical events. The potential outcomes 

related to crash propensity are baseline events, crash events, crash-relevant events, near-crash 

events, and non-subject conflict events. As can be seen, the response outcome is discrete and un-

ordinal in nature, and thus un-ordinal discrete framework can be used. Following McFadden et 

al. (McFadden, 1973), a crash propensity function determining the outcome “i ” of a specific 

event “j” can be defined as: 

𝐶𝑃𝑖𝑗 = 𝛃𝐢𝐗𝐢𝐣 + εij Equation 5.5 

 

Where: 𝐶𝑃𝑖𝑗 is a crash propensity function determining the safety outcome “i” (if event was 

baseline, crash, crash-relevant, near-crash, or non-subject conflict) for event “j”; 𝐗𝐢𝐣 is the matrix 

of explanatory variables (driving volatility related variables, pre-crash maneuvers, weather, or 

traffic factors);  𝛃𝐢 is the vector of estimable parameters related to each explanatory factor in 𝐗𝐢𝐣, 

and εij are the error terms. Following McFadden (1973) (McFadden, 1973) and Train (Train, 

2003), if εij are assumed to be generalized extreme value distribution, the multinomial logit 

model can be formulated as: 

𝑃𝑗(𝑖) =
exp[𝛃𝐢𝐗𝐢𝐣]

∑ exp[𝛃𝐢𝐗𝐈𝐣]I

 
Equation 5.6 
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Where: Pj(i) is the probability of specific outcome “i ” (from the super-set of all possible 

categories “I” defined earlier) for event “j”. Following (Train, 2003), the following log-

likelihood function can be solved to get estimates of 𝛃𝐢: 

LL = ∑ (∑ ℵij [βiXij − LN ∑ exp(βiXIj)

∀ I

]

I

i=1

)

J

j=1

 

Equation 5.7 

 

 

Where: ℵij is an indicator equal to 1 if observed response outcome for event “j” is “i”, and 0 

otherwise (Train, 2003). For further details about the fundamentals of the statistical methods 

used, see (Wu and Jovanis, 2012).   

 

5.3.5.1 Unobserved Heterogeneity 

 

The key focus of this study is to investigate correlations between driving volatility related 

measures and crash propensity. Crash propensity can be influenced by different factors, some of 

which are observed while other factors are unobserved in the data at hand.  Given such 

unobserved factors, the correlation between explanatory factors (such as driving volatility 

indices) and crash propensity may vary across different events, and which is referred to 

unobserved heterogeneity in the literature (Train, 2003). In addition, the issue of possible 

omission of relevant and important explanatory factor(s) from the modeling framework has also 

serious implications (Jovanis et al., 2011, Washington et al., 2010). For example, if important 

explanatory factor (e.g., education, age, gender etc.) that may influence driver’s performance is 

omitted from the model, it may happen that the observed correlation between driving volatility 

indices (observed explanatory factor) and crash propensity may be an outgrowth of those omitted 

factors, and not true correlation between volatility and crash propensity (Washington et al., 

2010). Note that, the unobserved factors need not to be only driver-related but can also include 
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other omitted and important variables, such as situational variables (Jovanis et al., 2011). For 

instance, while the SHRP 2 NDS database contains very detailed context-specific data, 

information on certain situational variables such as more complex situations, shorter sight 

distances, erratic driving be other motorists may not be available. These omitted situational 

factors may also be correlated with crash propensity. In our case, all such unobserved factors 

(driver-specific, vehicle-specific, environment-specific, and situation-specific, to name a few) 

that are likely to be correlated with crash propensity become a portion of the unobserved 

heterogeneity. As such, the statistical methods used in this study account for all different types of 

unobserved variables. To reach reliable conclusions about the correlation between driving 

volatility and crash propensity, it is crucial to account for the afore-mentioned methodological 

concerns. To account for these issues (Kamrani et al., 2017, Savolainen et al., 2011), a random 

parameter framework is adopted where the 𝛃𝐢 are allowed to vary across different events 

according to some pre-specified distribution. Following (Train, 2003), a mixing distribution is 

introduced in random parameters logit model, where the logit framework now becomes: 

𝑃𝑗(𝑖) = ∫
exp[𝛃𝐢𝐗𝐢𝐣]

∑ exp[𝛃𝐢𝐗𝐈𝐣]I

f(β|φ)dβ 
Equation 5.8 

 

Where: f(β|φ) is the density function of β conditional on the vector of parameters for the density 

function denoted φ. With the random parameter logit model in Equation 5.8, β can now account 

for driver-specific variations of the effect of 𝐗𝐢 on probabilities of different crash propensity 

outcomes, and with β determined by approximating the integral in Equation 5.8 by drawing from 

a pre-specified density function f(β|φ) (Train, 2003). The estimation proceeds with Maximum 

Simulated Likelihood procedures where Halton draws (compared to random draws) are used in 

the simulation process. In this study, 1000 Halton draws are used for parameter estimation, 
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nonetheless, 200 Halton draws are reported to produce accurate parameter estimates (Train, 

2003, Bhat, 2003). Regarding function form of the parameter density functions, we have tested 

normal, lognormal, triangular, uniform, and Weibull distributions. Further details can be found in 

(Kamrani et al., 2017, Train, 2003).  

 

Although crash propensity function in all the estimated random parameter logit models are 

expressed in linear form, the logit transformation restricts direct interpretation of parameter 

estimates (Naik et al., 2016). To intuitively interpret the modeling results, marginal effects are 

estimated for the fixed- and random-parameter logit model (Naik et al., 2016). For a certain 

change in value of explanatory factor, marginal effect suggests an instantaneous change in the 

probability of a crash propensity outcome while keeping all other factors at constant. Separate 

marginal effects are estimated for continuous and binary indicator variables. Following (Train, 

2003), as marginal effects can be different at different levels of explanatory factors, therefore the 

average marginal effects over the sampled events are estimated.  

 

5.4 DESCRIPTIVE ANALYSIS 

 

5.4.1 Concept Illustration and Descriptive Statistics 

To understand how microscopic driving decisions vary across different events, Figure 5.4 

illustrates the distributions of longitudinal acceleration against speed for baselines/normal 

driving events, crash events, and near-crash events. As can be seen, high speeds (>50-60 kph) are 

associated with smaller magnitudes of acceleration/deceleration as well as smaller dispersion in 

acceleration/deceleration values, i.e., lower volatility.  
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Figure 5.4 Scatter and density plot distributions of longitudinal acceleration and speed in 

baseline, crash, and near-crash events 

 

Likewise, for each of baseline, crash, and near-crash events, Figure 5.4 provides the density 

scatter plot of the relationship between longitudinal acceleration and speed. It can be seen that 

the bandwidth of acceleration values at high speeds is tighter than the bandwidth of acceleration 

values at low speeds. This finding corresponds with our understandings of basic Physics 

principles according to which the ability to accelerate a vehicle naturally decreases at higher 

traveling speeds (Figure 4) (Khattak and Wali, 2017, Liu and Khattak, 2016b). 
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Importantly, Figure 5.4 also reveals a smaller dispersion in microscopic driver decisions in 

baselines events, compared to significantly greater dispersion in case of crash and/or near-crash 

events (Figure 5.4). This finding suggests that drivers on-average are more volatile in crash and 

near-crash events.  

 

Next, Figure 5.5 presents the distributions of eight volatility measures considered in this study. 

For brevity, the distributions of volatility measure calculated using the entire data (20 seconds 

for baseline and 30 seconds for crashes/near-crashes) are shown (Figure 5.5). All eight volatility 

measures are not normally distributed and in fact skewed to the right, with mean volatility 

statistic greater than the median. Recall that coefficient of variation (Figure 5.3) is used as a 

measure to capture volatility in instantaneous driving decisions. Interestingly, the four volatility 

measures based on longitudinal and lateral accelerations (top two plots in Figure 5.5) exhibit 

similar patterns, whereas, the volatility measures based on longitudinal and lateral vehicular jerks 

have greater magnitudes as well as range. Broadly, this suggests that vehicular jerk based 

measures may also better characterize the volatility in instantaneous driving decisions as it 

accounts for the sharp rate of change (within one-tenth of a second) in acceleration values (Wali 

et al., 2018d, Wali et al., 2018e, Liu and Khattak, 2016b, Feng et al., 2017).  
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Figure 5.5 Distributions of volatility measures in naturalistic driving environment calculated 

using the entire data 

 

Next, to see if there are statistically significant differences between driving volatility in safety 

critical events (crash, near-crash) and baseline events, ANOVA analysis is performed and results 

shown in Table 5.2. Our a-priori hypothesis is that compared to baseline (normal) driving events, 

drivers may exhibit greater volatility in crash and/or near-crash events.
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Table 5.2 Descriptive and ANOVA Analysis of Driving Volatility Measures in Naturalistic Driving Environment 

 Longitudinal Volatility Lateral Volatility 

PM* 

 

Positive 

vehicular jerk 

 

Negative 

vehicular jerk 

 

Acceleration Deceleration 

Positive 

vehicular jerk 

 

Negative 

vehicular jerk 

 

Acceleration Deceleration 

Event 

Type Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Baseline 0.99 0.18 0.82 0.15 0.80 0.29 0.71 0.19 0.97 0.17 0.84 0.18 0.99 0.33 0.71 0.20 

Crash 2.41 1.28 1.98 1.04 1.03 0.52 1.21 0.62 2.24 1.05 1.85 0.76 1.37 0.61 1.20 0.55 

Near-

Crash 1.77 0.77 1.50 0.47 0.87 0.31 1.42 0.45 1.30 0.46 1.06 0.33 1.14 0.46 0.92 0.36 

 Analysis of Variance 

 B W B W B W B W B W B W B W B W 

SS 1754.4 2131.2 1238 1184.0 35.2 946.3 656.7 792 

1048.

2 1224.5 653.5 775.1 104.2 1328.7 175.9 667.3 

DF 2 9556 2 9553 2 9426 2 9337 2 9,555 2 9,553 2 9409 2 9446 

MS 877.2 0.2 619.1 0.1 17.6 0.1 328.4 0.1 524.1 0.1 326.8 0.1 52.1 0.1 88.0 0.1 

F 3933.3 --- 4995 --- 175.5 --- 3870 --- 4089 --- 4027.6 --- 369.0 --- 1245 --- 

Prob > F 0 --- 0 --- 0 --- 0 --- 0 --- 0 --- 0 --- 0 --- 

Notes: (*) PM is performance measures; For definitions of volatility measures, refer to Figure 2; SD is standard deviation; SS is Sum of 

Squares; DF is degrees of freedom; MS is mean of squares and is calculated as SS/DF; F is the corresponding F-statistic; B refers to 

between groups variance; W refers to within group variance; (---) means Not-Applicable; Unit for volatility in jerk is 
𝑚

𝑠𝑒𝑐3 
; Unit for 

volatility in acceleration and deceleration is: 
𝑚

𝑠𝑒𝑐2 
.  
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Note that the below descriptive findings relate to driving volatility indices calculated using the 

entire time-series (20 seconds for baselines, and 30 seconds for crashes/near-crashes) and not the 

segmented time series data (see section 5.3.3 for details). The rigorous statistical analyses 

presented in next section carefully addresses the issue of intentional vs. unintentional volatility 

and how it relates to crash propensity.  

 

The top panel in Table 5.2 presents the summary statistics for all eight volatility measures 

(calculated using the entire data – refer to the third column in Table 5.1) and for each of the three 

event types. Whereas, the bottom panel summarizes the within- and between-group variances 

across the three event types. The within- and between-group variances are obtained from one-

way ANOVA analysis (Stata, 2016). In particular, the grouping variable is event type, and which 

can be a baseline, near-crash, and crash. The motivation behind using event type as a grouping 

unit is that we are interested in examining the magnitudes and variations in volatilities across 

different normal and/or safety-critical events. Of course, the one-way ANOVA analysis of 

driving volatilities can also be performed by considering other grouping units such as driver 

gender, age-groups, or education status, etc. However, we use the variable event type given the 

primary focus of characterizing extent of variations in microscopic driving decisions within and 

across different event types.  The following observations can be made from Table 5.2: 

 

 For all eight volatility measures (except one) tested, compared to baseline events, drivers 

on-average exhibit higher volatility in near-crash situations, whereas drivers’ volatility in 

crash events is further greater than in near-crash situations.  

 Interestingly, for near-crash events, the volatility in deceleration in longitudinal direction 
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is greater than volatility in crash events (mean of 1.42 and 1.21 for near-crash and crash 

events respectively). This may be since drivers, in near-crash events, may react quickly 

(and with high volatility) to avoid an actual crash, and thus observed as near-crash.  

 For volatility in longitudinal direction based on acceleration/deceleration measure, it is 

observed that drivers exhibit greater volatility in deceleration as compared to their volatility 

in acceleration (see mean values in top panel of Table 5.2 under longitudinal volatility). 

This is intuitive as drivers may react quickly to potential safety hazards in front of them 

and thus decelerate harder.  

 For all volatility measures, compared to between-group variances, within-group variances 

are greater, suggesting larger variance in volatilities exhibited by different drivers involved 

in same event type. This is intuitive given the driver-specific differences and that different 

drivers may respond differently even in same situations.  

 Finally, for all the eight volatility measures, there is statistically significant evidence that 

driver volatilities in baseline, near-crash, and crash events are significantly different (see 

F-statistics and corresponding p-values in bottom panel of Table 5.2), with volatilities in 

near-crash and crash events significantly greater than volatility in baseline events.  

 

Next, Table 5.3 provides the descriptive statistics of the significant variables in subsequent 

statistical models. The descriptive statistics of volatility related variables using the data (30-

seconds for crash and near-crash and 20 seconds for baseline events) are presented in Table 5.3. 

Furthermore, driving volatility prior to involvement in safety-critical events can contain different 

components, i.e., intentional and unintentional volatility (section 5.3.3).  
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Table 5.3 Descriptive Statistics of Key Variables 

Variable Mean 

Std. 

Dev. Min Max VIF 

Key Volatility Indicators (entire 30 seconds driving data)      

Volatility (Positive vehicular Jerk: longitudinal 

direction) 1.195 0.638 0.28 9.13 4.75 

Volatility (Negative vehicular Jerk: longitudinal 

direction) 0.997 0.503 0 6.59 4.73 

Volatility (Positive vehicular Jerk: lateral direction) 1.107 0.488 0.47 7.43 4.72 

Volatility (Negative vehicular Jerk: lateral 

direction) 0.942 0.387 0.43 5.90 4.46 

Volatility (Acceleration: longitudinal direction) 0.827 0.323 0 5.17 1.14 

Volatility (Deceleration: longitudinal direction) 0.849 0.394 0 6.09 1.65 

Volatility (Acceleration: lateral direction) 1.037 0.390 0 5.92 1.28 

Volatility (Deceleration: lateral direction) 0.776 0.299 0 4.27 1.26 

Key Volatility Indicators (first 20 seconds driving data)      

Volatility (Positive vehicular Jerk: longitudinal 

direction) 1.024 0.270 0.28 5.70 2.15 

Volatility (Negative vehicular Jerk: longitudinal 

direction) 0.836 0.184 0 3.30 1.86 

Volatility (Positive vehicular Jerk: lateral direction) 1.012 0.309 0.47 14.07 2.36 

Volatility (Negative vehicular Jerk: lateral 

direction) 0.854 0.202 0 4.03 2.20 

Volatility (Acceleration: longitudinal direction) 0.800 0.303 0 4.16 1.03 

Volatility (Deceleration: longitudinal direction) 0.721 0.211 0 2.41 1.12 

Volatility (Acceleration: lateral direction) 0.986 0.365 0 6.99 1.07 

Volatility (Deceleration: lateral direction) 0.717 0.211 0 2.47 1.16 

Key Volatility Indicators (first 25 seconds driving data)      

Volatility (Positive vehicular Jerk: longitudinal 

direction) 1.168 0.600 0.28 9.06 4.09 

Volatility (Negative vehicular Jerk: longitudinal 

direction) 0.984 0.491 0 6.46 4.08 

Volatility (Positive vehicular Jerk: lateral direction) 1.093 0.476 0.47 8.72 4.01 

Volatility (Negative vehicular Jerk: lateral 

direction) 0.930 0.370 0.43 5.62 3.85 

Volatility (Acceleration: longitudinal direction) 0.822 0.322 0 5.17 1.07 

Volatility (Deceleration: longitudinal direction) 0.840 0.386 0 6.08 1.74 

Volatility (Acceleration: lateral direction) 1.029 0.392 0 7.27 1.16 

Volatility (Deceleration: lateral direction) 0.767 0.294 0 5.25 1.52 

Drivers' Secondary Task Durations      

Secondary Task 1 (duration in seconds) 2.092 2.720 0 24.12 1.16 

Secondary Task 2 (duration in seconds) 0.357 1.259 0 14.22 1.12 

Secondary Task 3 (duration in seconds) 0.047 0.465 0 15.00 1.07 

Notes: Sample size is N = 9593; SD is standard deviation; and VIF is Variance Inflation Factor.  
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Table 5.3 Descriptive Statistics of Key Variables (Continued) 

Variable Mean 

Std. 

Dev. Min Max VIF 

Secondary Tasks      

Adjusting/monitoring other devices, 0 

otherwise 0.008 0.092 0 1 1.03 

Engaged with cell-phone, dialing hand-

held 0.002 0.040 0 1 1.04 

Cell-phone, Texting 0.023 0.149 0 1 1.06 

Looking at pedestrian 0.004 0.061 0 1 1.09 

Pre-Incident Maneuvers      

Changing lanes 0.038 0.190 0 1 1.06 

Making U-turn 0.002 0.046 0 1 1.03 

Merging 0.003 0.059 0 1 1.03 

Passing or overtaking 0.005 0.071 0 1 1.09 

Legality of Maneuvers      

Maneuver is safe and legal 0.893 0.309 0 1 1.83 

Maneuver is safe but illegal 0.021 0.142 0 1 1.44 

Maneuver is unsafe but legal 0.027 0.162 0 1 1.31 

Driver Behavior      

Unfamiliar/inexperience with roadway 0.003 0.050 0 1 1.45 

Aggressive Driving 0.002 0.046 0 1 1.65 

Drowsy, sleepy, fatigued 0.013 0.112 0 1 2.12 

Angry 0.005 0.069 0 1 1.12 

Number of occupants      

Front Seat Passengers 1.279 0.449 1 3 1.12 

Rear Seat Passengers 0.106 0.416 0 5 1.08 

Intersection-Roadway Influence      

Intersection influence: Traffic Signal 0.124 0.329 0 1 1.13 

Intersection influence: Uncontrolled 0.034 0.181 0 1 1.05 

Intersection influence: Stop sign 0.034 0.181 0 1 1.08 

Divided Roadway 0.400 0.490 0 1 2.10 

Not Divided - 2 way Traffic 0.431 0.495 0 1 2.05 

Traffic Flow Factors      

Level of Service: A1 0.406 0.491 0 1 1.78 

Level of Service: A2 0.300 0.458 0 1 1.56 

Unstable Flow 0.021 0.142 0 1 1.07 

Dead Flow 0.010 0.100 0 1 1.04 

Notes: Sample size is N = 9593; SD is standard deviation; and VIF is Variance Inflation 

Factor.  
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To that effect, Table 5.3 also presents the descriptive statistics of volatility measures calculated 

using the first 20 seconds and 25 seconds driving data (as listed earlier in Table 5.1). Compared 

to volatility measures calculated using entire data, the volatility measures computed using the 

censored data are more likely to reflect the actual driving behavior and not the evasive 

maneuvers undertook by driver due to situational factors.  

 

Several important insights can be obtained. First, the distributions of aggregate volatility 

measures (calculated using entire data) and volatility measures (calculated using censored data) 

are on-average similar (see the descriptive statistics in Table 5.3). For instance, the mean 

coefficient of variation for positive vehicular Jerk in longitudinal direction is 1.195 (for the entire 

data) compared to the mean coefficient of variation of 1.168 computed using the first 25-seconds 

data. Similar observations can be made for other volatility performance measures in longitudinal 

and lateral directions. This indicates that for the sampled events, drivers were not just volatile 

immediately before a crash (i.e., 5 seconds before the crash/near-crash) but also exhibited erratic 

or volatile behavior well before the crash (as reflected in volatility measures computed using first 

20-seconds or 25-seconds data). Based on the discussion presented in earlier sections, the critical 

question then becomes how intentional volatility may be associated with crash propensity? Or in 

other words, is the relationship between aggregate driving volatility measures and crash 

propensity significantly different than the relationship between censored driving volatility 

measures and crash propensity. Note, however, that irrespective of the empirical results, the 

censoring of driving behavior data for eliminating the bias due to reverse causality is 

conceptually critical.  
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Regarding other factors, the average durations of first, second, and third secondary tasks are 

2.09, 0.35, and 0.047 seconds respectively. Regarding secondary tasks, driver was observed to be 

texting while driving and looking at pedestrians in approximately 2.3% and 0.4% of the events 

(221 and 39 events). In 3.8% of the events, drivers changed lanes prior to getting involved in one 

of the three events. Interestingly, driver maneuver was observed to be safe but illegal in 201 

events, whereas, maneuver was unsafe but legal in 259 events. The average number of front-seat 

(including driver) and rear-seat passengers are 1.279 and 0.106 respectively. Most of the events 

(around 70%) happened under free-flow traffic conditions. To check for multicollinearity, 

variance inflation factors are reported for all the explanatory variables. A VIF value of less than 

10 indicates lack of problematic multicollinearity. In our case, VIF values for all explanatory 

factors are less than 5 (Table 5.3). 

 

5.5 MODELING RESULTS 

 

This section presents the results of fixed- and random-parameter logit models, where crash 

propensity is modeled as a function of driving volatility related measures and other factors. In 

particular, owing to the issue of intentional and unintentional volatility (as discussed in section 

5.3.3), two sets of statistical models are estimated. The first set of statistical models contain the 

aggregate volatility measures (calculated using the entire time series data) as explanatory factors 

in addition to other factors. The use of aggregate volatility measures for explaining crash 

propensity can provide insights regarding how driving volatility relates to occurrence of unsafe 

outcomes. However, as noted earlier, driving volatility can contain separate components where 

the first component can be regarded as actual driving behavior (or intentional volatility) whereas 

the second component may reflect unintentional volatility (or volatility not due to the driver per 
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se but due to the external situational factors). The use of aggregate volatility measures will not 

allow us to relate how “intentional volatility” may be linked with crash propensity. In this regard, 

the second set of statistical models contain segmented volatility measures (calculated using 

censored time series data) as explanatory factors. For convenience, we first present the results of 

statistical models with aggregate volatility measures followed by presentation of results of 

statistical models with segmented volatility measures.  

5.5.1 Modeling Scheme 

Before presenting the results, we briefly present the overview of the modeling scheme. As 

mentioned earlier, the first set of models use aggregate driving volatility measures that are 

computed using the entire driving behavior time series data (30 seconds for crash/near-crash and 

20 seconds for baseline events). Under this setting, for computing driving volatility, two sets of 

performance measures are considered, i.e., acceleration/deceleration and vehicular jerk. The 

statistical models with aggregate vehicular jerk or acceleration/deceleration based volatility 

measures as explanatory variables are termed as Category 1 and Category 2 models, respectively 

(see Table 5.4).  The rationale behind considering these two performance measures is to 

investigate if vehicular jerk based driving volatility (compared to acceleration/deceleration 

based) measures better explain crash propensity or vice versa. For each of the two performance 

measures, fixed and random parameter logit models are developed.  

 

Next, to separate out the two components of driving volatility, i.e., intentional vs. unintentional 

volatility, second set of statistical models are developed (Table 5.4). Under this setting, two 

schemes of censoring mechanisms for time series driving behavior data are considered. In 

particular, only the first 20 seconds time series data are used for computing driving volatility 
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measures in the first censoring scheme (see Table 5.1 and 5.4). Whereas, in the second censoring 

scheme, the first 25 seconds time series data are used for computing volatility indices and the last 

5 seconds driving data are not considered (Table 5.4). As explained in detail earlier, the 

censoring of time series data can help in removing the influence of driver reactions immediately 

prior to crash or near-crash outcomes from the volatility measures while retaining volatility 

derived from driver behavior in the seconds leading up to but no immediately before the 

crash/near-crash event. Thus, using the best-fit performance measure under Category 1 and 2 

models, censored versions of volatility indices are considered in Category 3 and 4 models. For 

each of the two categories, fixed and random parameter logit models are estimated (Table 5.4).  

 

Table 5.4 Overview of Statistical Models Considered in this Study 

Category Key Volatility Variables as 

Correlates 

Statistical Models 

Fixed Parameter 

Logit 

Random Parameter 

Logit 

 

First set of models: Computed 

using Aggregate time series 

data   

Category 1 

Acceleration/Deceleration 

based volatility measures   

Category 2 

Vehicular jerk based volatility 

measures   

 

Second set of models: 

Computed using censored time 

series data   

Category 3 

Volatility measures computed 

using first 20 seconds time 

series data*   

Category 4 

Volatility measures computed 

using first 25 seconds time 

series data*   

Notes: (*) the performance measures (vehicular jerk vs. acceleration/deceleration) that provided 

statistically better results in first set of models are used in the second set of models (category 3 and 4 

models).  
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5.5.2 Estimation Results 

The results of statistical models are discussed next that quantify the correlations between crash 

propensity and driving volatility (aggregate and segmented), after controlling for other traffic, 

crash, and unobserved factors. As mentioned earlier, the crash propensity quantifies the risk of a 

crash or near-crash event relative to a normal43 (baseline driving event). First, a series of fixed-

parameter logit models are estimated in which the parameter estimates were constrained to be 

fixed across all events. The fixed parameter multinomial logit models are derived from a 

systematic process to include most important variables (such as driving volatility related 

variables and others) on basis of statistical significance, specification parsimony, and intuition. 

For example, given the key focus, only aggregate volatility related variables were first inserted 

into the crash propensity functions to better understand the relationship between driving 

volatility and crash propensity. Driving volatility related variables that were statistically 

significant at 90% confidence level were retained in the corresponding crash propensity 

functions. Once this was done, other important variables as shown in Table 3 were inserted into 

the crash propensity functions in a step wise fashion. In doing so, variance inflation factors (VIF) 

of explanatory factors were examined to avoid multicollinearity issue. As discussed in detail in 

methodology section, unobserved heterogeneity and omitted variable bias is suspected and in 

presence of which accurate correlations between driving volatility related measures and crash 

propensity cannot be established. Therefore, random-parameter logit models are estimated where 

all the parameter estimates were allowed (and tested) to vary across different events. Any 

                                                 
43 According to the results of the manual video checking analysis discussed in section 5.3.4, we found that many of 

the randomly sampled crashes were probably not police reportable as they were quite minor (running over curb, 

side-walk, slight bumper touching in parking lot, etc.). These crashes in the NDS data may not even reach the crash 

reporting limit (USD 400 in Tennessee and USD 1000 in North Carolina and Virginia). Thus, the analysis presented 

includes minor crashes. This gives us the opportunity to look at some of the non-police reported crashes, even 

though they may be minor.  
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parameter estimate that resulted in statistically significant mean and/or standard deviation was 

retained as a random parameter in final model specification. Below, we briefly explain the key 

model comparison results from the first set of statistical models (using aggregate volatility 

measures) and the second set of statistical models (using segmented volatility measures). Note 

that the first set of models are briefly discussed for the sake of completeness and are treated as 

base models. As discussed in Section 5.3.3 in detail, a better way of quantifying the correlations 

between driving volatility and crash propensity is to eliminate the seconds of driving data 

immediately prior to crash/near-crash from the calculations of driving volatility, as done in the 

second set of statistical models below.  

 

5.5.2.1 Statistical Models Using Aggregate Volatility Measures as Explanatory Factors  

 

Under the first set of statistical models, eight different volatility measures based on 

acceleration/deceleration and vehicular jerk in longitudinal and lateral direction are considered 

(see Table 5.4). In particular, fixed and random parameter models with acceleration/deceleration 

based volatility indices are termed as Category 1 models, whereas models with vehicular jerk 

based measures are termed as Category 2 models (Table 5.4). In the models above, both 

longitudinal and lateral volatility are considered. Conceptually, we hypothesize that vehicular 

jerk based volatility measures may perform better than acceleration based measures as the earlier 

accounts for the sharp rate of change (within one-tenth of a second) in acceleration values. Table 

5.5 summarizes the goodness-of-fit results of fixed- and random-parameter Category 1 and 2 

logit models. It is seen that random-parameter models in the two categories clearly outperformed 

their fixed-parameter counterparts. This is evident from the significantly lower AIC and BIC 

values for random-parameter models (Table 5.5). Also, the results of likelihood-ratio test are 
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reported which suggest that random-parameter models are statistically superior to their fixed 

parameter counterparts at 99.5% confidence level (Table 5.5) (Washington et al., 2010). 

Specifically, the parameter estimates for eight variables each in Category 1 model, and six 

variables in Category 2 models are found to be normally distributed random parameters, 

suggesting significant heterogeneity in the effects of explanatory factors (including aggregate 

volatility measures) on crash propensity (Table 5.5). Importantly, both for fixed- and random-

parameter approaches, vehicular jerk based longitudinal and lateral volatility measures (category 

2 models) performed statistically superior to acceleration based volatility measures (category 1 

models). After adjusting for the degrees of freedom differences, this is evident from the 

significantly lower AIC and BIC values for category 2 models against category 1 models (Table 

5.5). This finding is intuitive and expected as hypothesized earlier.   

 

Table 5.5 Model Comparison Using Aggregate Driving Volatility Measures 

 Category 1 Models Category 2 Models 

 

Random 

Parameters 

Fixed 

Parameters 

Random 

Parameters 

Fixed 

Parameters 

Number of Parameters 45 37 39 33 

Log-likelihood at zero -6202.12 -6202.12 -6202.12 -6202.12 

Log-likelihood at convergence -2568.27 -2609.51 -2001.71 -2044.20 

AIC 5226.54 5293.02 4081.418 4154.413 

BIC 5546.02 5555.71 4403.683 4427.1 

Likelihood Ratio Test 

Random vs Fixed 

Parameters 

Random vs Fixed 

Parameters 

Likelihood Ratio χ2 
82.48 84.98 

DF 
8 6 

Prob >  χ2 
0.000 0.000 

Notes: Category 1 models include acceleration/deceleration based volatility measures as explanatory 

factors; Category 2 models include vehicular jerk based volatility measures as explanatory factors; AIC is 

Akaike Information Criterion; BIC is Bayesian Information Criterion; DF is Degree of Freedom.  
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5.5.2.2 Statistical Models Using Segmented Volatility Measures as Explanatory Factors  

 

To separate out the different components of driving volatility in time to crash/near-crash, this 

section briefly presents the results of statistical models with segmented driving volatility 

measures calculated either using first 20-seconds time series data (Category 3 models) or first 

25-seconds time series data  (Category 4 models). To account for unobserved heterogeneity and 

omitted variable bias, both fixed and random parameter logit models are estimated. As vehicular 

jerk based volatility indices significantly outperformed acceleration/deceleration based volatility 

indices (see earlier section), only vehicular jerk based volatility indices are considered in this set 

of statistical models. Table 5.6 summarizes the goodness-of-fit results of fixed- and random-

parameter Category 3 and 4 logit models. Several insights can be obtained from the results 

presented in Table 5.6. First, models with vehicular jerk based volatility measures that are 

calculated using first 25 seconds time series data (Category 4 models) significantly outperformed 

the models with volatility measures calculated using the first 20-seconds time series data 

(Category 3 models). This can be seen from the significantly lower AIC/BIC values for Category 

4 models. Second, owing to the presence of unobserved heterogeneity and potential omitted 

variable bias, the random-parameter models in the two categories clearly outperformed their 

fixed-parameter counterparts, as indicated by lower AIC/BIC values for random parameter 

models and likelihood ratio test statistics favoring random parameter models (Table 5.6).  

 

 

 

 

 

 

 

 

 



 

 

 

209 

 

Table 5.6 Model Comparison Using Segmented Driving Volatility Measures 

 Category 3 Models Category 4 Models 

 

Random 

Parameters 

Fixed 

Parameters 

Random 

Parameters Fixed Parameters 

Number of Parameters 35 33 38 33 

Log-likelihood at zero -6202.12 -6202.12 -6202.12 -6202.12 

Log-likelihood at convergence -4522.30 -4533.75 -2411.88 -2475.94 

AIC 9114.60 9133.50 4899.76 5017.88 

BIC 9365.35 9369.92 5172.00 5254.30 

Likelihood Ratio Test     

Likelihood Ratio χ2 10.91 128.11 

DF 2 5 

Prob > χ2 0.0043 0 

Notes: Category 3 models include vehicular jerk based volatility measures calculated using first 20-

seconds time series data as explanatory factors; Category 4 models include vehicular jerk based volatility 

measures calculated using first 25-seconds time series data as explanatory factors; AIC is Akaike 

Information Criterion; BIC is Bayesian Information Criterion; DF is Degree of Freedom.  

 

Table 5.7 shows the results of random parameter Category 4 model, i.e., models estimated with 

segmented vehicular jerk based volatility measures based on 25-seconds driving data. To 

contrast the differences, results of fixed parameter Category 4 model are also presented in Table 

5.7. Finally, to better interpret the results, marginal effects are provided in Table 8 for the best-fit 

random parameter Category 4 model. To demonstrate the differences in the effects of 

explanatory factors on crash propensity, Table 5.8 also provides the marginal effects for fixed 

parameter Category 4 model. Given the conceptual motivation presented in Section 5.3.3, and 

the fact that Category 4 vehicular jerk based models with volatility measures calculated using 25-

seconds data resulted in best-fit, we base our discussion on the results of Category 4 models 

only. Nonetheless, for completeness, the estimation results of random parameter Category 1 and 

2 models and the marginal effects of best-fit Category 2 model (among the aggregate volatility 

models) are presented in Tables 5A.1 and 5A.2 in Appendix A. 
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Table 5.7 Estimation Results of Random Parameter Logit Models for Crash Propensity with Segmented Vehicular Jerk Based Driving 

Volatility Measures* 

Variable 

Category 4 Model: Fixed 

Parameter Logit1 

Category 4 Model: Random 

Parameter Logit1 

Crash Near-Crash Crash Near-Crash 

Coeff z-score Coeff z-score Coeff 

z-

score Coeff z-score 

Constant 

-

12.95 -30.93 -8.80 -26.39 -27.12 -8.8 -9.73 -21.57 

standard deviation --- --- --- --- 4.52 6.85 --- --- 

Key Segmented Volatility Indicators (Based on first 25 seconds 

data bin)         

Volatility (Positive vehicular Jerk: longitudinal direction) 1.92 8.82 1.88 9.17 2.21 4.26 2.15 8.64 

standard deviation --- --- --- --- 2.56 5.15 --- --- 

Volatility (Negative vehicular Jerk: longitudinal direction) 5.51 20.73 5.37 21.56 7.18 10.72 6.71 19.08 

Volatility (Positive vehicular Jerk: lateral direction) 2.41 8.14 1.95 6.84 5.76 5.79 1.65 4.62 

Volatility (Negative vehicular Jerk: lateral direction) 1.51 4.9 -0.18 -0.63 5.62 5.08 -0.27 -0.75 

Drivers' Secondary Task Durations         

Secondary Task 1 (duration in seconds) 0.27 12.64 0.22 12.97 0.51 6.67 0.24 11.43 

Secondary Task 2 (duration in seconds) 0.17 4.26 0.15 4.55 0.29 2.52 0.18 4.43 

Legality of Maneuvers         

Maneuver is safe and legal -2.30 -13.39 -2.22 -16.27 -3.95 -6.44 -2.59 -14.84 

standard deviation --- --- --- --- -0.79 -2.2 --- --- 

Maneuver is safe but illegal -2.23 -4.74 -3.59 -7.27 -2.67 -2.36 -4.71 -6.99 

Driver Behavior         

Unfamiliar/inexperience with roadway 1.55 2.79 --- --- 5.84 2.97 --- --- 

Aggressive Driving --- --- 2.85 3.24 --- --- 3.09 3.2 

Front Seat Passengers -0.43 -2.74 -0.52 -4.48 -0.49 -2.27 -0.55 -3.94 

Notes: (*) Baseline event is considered base category- all parameter estimates to be interpreted relative to baseline event; (1) refers to 

models with vehicular jerk based volatility measures calculated using first 25-seconds time series data.  
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Table 5.7 Estimation Results of Random Parameter Logit Models for Crash Propensity with Segmented Vehicular Jerk Based Driving 

Volatility Measures* (Continued) 

Variable 

Category 4 Model: Fixed 

Parameter Logit 

Category 4 Model: Random 

Parameter Logit 

Crash Near-Crash Crash Near-Crash 

Coeff z-score Coeff z-score Coeff z-score Coeff z-score 

Intersection-Roadway Influence         

Intersection influence: Traffic Signal 0.50 2.75 0.93 7.20 -2.46 -1.99 1.04 6.72 

standard deviation --- --- --- --- -4.87 -3.45 --- --- 

Intersection influence: Uncontrolled 1.89 7.57 2.19 11.06 2.97 4.21 2.61 10.84 

Divided Roadway -0.79 -4.88 --- --- -3.12 -4.54 --- --- 

Not Divided - 2 way Traffic -0.76 -4.97 -0.34 -3.23 -2.02 -4.03 -0.67 -3.97 

standard deviation --- --- --- --- --- --- 1.26 5.45 

Traffic Flow Factors         

Level of Service: A1 --- --- -1.35 -12.65 --- --- -1.99 -11.88 

Level of Service: A2 -0.35 -2.19 -0.73 -6.15 -1.14 -2.42 -0.96 -6.55 

Unstable Flow --- --- 0.86 3.58 --- --- 0.97 3.19 

Notes: (*) Baseline event is considered base category- all parameter estimates to be interpreted relative to baseline event; (1) refers to 

models with vehicular jerk based volatility measures calculated using first 25-seconds time series data.  
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Table 5.8 Marginal Effects of Fixed- and Random-Parameter Best-Fit Category 4 Model 

Variable 

Effects on probabilities of the event outcomes (multiplied by 

100) 

Fixed Parameter Logit 

Model 

Random Parameter Logit 

Model 

Baseline Crash 

Near-

Crash Baseline Crash 

Near-

Crash 

Crash        

Volatility (Positive vehicular Jerk: 

longitudinal direction) -3.15 3.47 -0.33 -3.53 5.21 -1.68 

Volatility (Negative vehicular Jerk: 

longitudinal direction) -9.02 9.95 -0.93 -9.03 13.86 -4.83 

Volatility (Positive vehicular Jerk: lateral 

direction) -3.95 4.36 -0.41 -6.05 9.81 -3.76 

Volatility (Negative vehicular Jerk: lateral 

direction) -2.47 2.73 -0.26 -5.78 9.44 -3.65 

Secondary Task 1 (duration in seconds) -0.44 0.48 -0.05 -0.27 0.55 -0.28 

Secondary Task 2 (duration in seconds) -0.28 0.31 -0.03 -0.14 0.30 -0.16 

Front seat passengers 0.70 -0.77 0.07 0.22 -0.48 0.26 

Maneuver is safe and legal 3.76 -4.14 0.39 2.89 -5.16 2.27 

Maneuver is safe but illegal 3.65 -4.02 0.38 0.97 -2.25 1.28 

Unfamiliar/inexperience with roadway -2.54 2.80 -0.26 -6.17 9.98 -3.81 

Intersection influence: Traffic Signal -0.81 0.90 -0.08 -0.21 -0.56 0.77 

Intersection influence: Uncontrolled -3.09 3.41 -0.32 -2.09 3.81 -1.73 

Divided Roadway 1.29 -1.42 0.13 1.30 -2.93 1.62 

Not Divided - 2 way Traffic 1.24 -1.37 0.13 1.02 -2.10 1.07 

Level of Service: A2 0.57 -0.63 0.06 0.52 -1.11 0.60 

Near-Crash       

Volatility (Positive vehicular Jerk: 

longitudinal direction) -15.41 -0.32 15.73 -10.74 -1.23 11.97 

Volatility (Negative vehicular Jerk: 

longitudinal direction) -43.99 -0.91 44.90 -60.61 -3.80 64.41 

Volatility (Positive vehicular Jerk: lateral 

direction) -16.02 -0.33 16.35 -7.43 -0.94 8.37 

Volatility (Negative vehicular Jerk: lateral 

direction) 1.51 0.03 -1.54 0.83 0.14 -0.97 

Secondary Task 1 (duration in seconds) -1.80 -0.04 1.90 -0.82 -0.13 0.95 

Secondary Task 2 (duration in seconds) -1.30 -0.03 1.30 -0.59 -0.10 0.69 

Front Seat Passengers 4.27 0.09 -4.35 1.59 0.29 -1.88 

Maneuver is safe and legal 18.21 0.38 -18.58 13.49 1.43 -14.92 

Maneuver is safe but illegal 29.39 0.61 -30.00 8.00 2.01 -10.00 

Aggressive Driving -23.34 -0.48 23.83 -18.76 -1.81 20.56 

Intersection influence: Traffic Signal -7.66 -0.16 7.82 -3.90 -0.58 4.47 

Intersection influence: Uncontrolled -17.92 -0.37 18.29 -14.15 -1.50 15.65 

Not Divided - 2 way Traffic 2.75 0.06 -2.81 1.17 0.33 -1.50 

Level of Service: A1 11.10 0.23 -11.33 6.06 1.11 -7.16 

Level of Service: A2 6.01 0.12 -6.13 2.93 0.50 -3.44 

Unstable Flow -7.04 -0.15 7.18 -3.75 -0.54 4.29 

Note: Marginal effects (multiplied by 100) rounded to nearest two decimals.  
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5.6 DISCUSSION 

 

5.6.1 Safety Effects of Driving Volatility 

As presented in earlier section, Category 4 vehicular jerk based models with volatility measures 

calculated using 25-seconds data resulted in best-fit. This suggests that volatility measures based 

on 25-seconds driving data best explain crash propensity, after accounting for the possible 

reverse causality that may arise due to the effects of unsafe outcomes on driving behavior 

immediately prior to involvement in unsafe outcomes. Thus, we discuss the key findings based 

on random parameter Category 4 model only, and contrast the results with fixed parameter 

Category 4 model to highlight the implications of ignoring unobserved heterogeneity and 

possible omitted variable bias. Furthermore, as the segmented volatility measures are likely to be 

reflecting the “intentional” driving behavior, we will refer to it as “intentional volatility” in 

interpreting the findings below.  

 

For crash outcome, the parameter estimates for all four segmented vehicular-jerk based volatility 

measures in the random parameter model are positive and statistically significant at 95% 

confidence level (Table 5.7). This suggests that, compared to baseline events, greater 

“intentional” volatility is associated with higher likelihood of involvement in a crash event. For 

example, a one-unit increase in segmented volatility associated with positive vehicular jerk in 

longitudinal direction is associated with a 5.21% increase in probability of observing a crash 

outcome (Table 5.8). However, the parameter estimate for segmented volatility in positive 

vehicular jerk in longitudinal direction is normally distributed random parameter with a mean of 

2.21 and standard deviation of 2.56 (Table 5.7). This suggests that the associations are not fixed 

and vary across different events.  
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To visualize the heterogeneity in the effects of random parameters, Figure 5.6 shows the 

distributions of all random parameters in Category 4 model, e.g., see box-plot 1 in Figure 5.6 for 

positive vehicular jerk in longitudinal direction. Likewise, a one-unit increase in volatility 

associated with positive vehicular jerk in lateral direction increases the probability of observing a 

crash outcome by 8.81 percentage points (Table 5.8). 

 

These findings are important because it suggests that greater “intentional volatility” in positive 

vehicular jerk in time to crash and near-crash makes unsafe outcomes a more probable outcome. 

Regarding the effects of volatility in deceleration (both in longitudinal and lateral direction) on 

crash outcomes, the estimation results reveal important findings. For instance, as shown in Table 

5.8, a one-unit increase in segmented volatility associated with negative jerk in longitudinal 

direction increases the probability of crash outcome by 13.86 percentage points (compared to 

only 5.21 percentage points increase for segmented volatility associated with positive jerk in 

longitudinal direction). This finding corroborates previous research finding by the authors which 

focused on correlations between volatility and crash frequency (Kamrani et al., 2017, Wali et al., 

2018d). Likewise, a one-unit increase in volatility associated with negative jerk in lateral 

direction increases the probability of crash outcome by 9.44 percentage points (Table 5.8). The 

above findings show that intentional volatility in negative vehicular jerk (both lateral and 

longitudinal direction) has more negative consequences than volatility in positive vehicular jerk. 
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Figure 5.6 Distributions of random-parameters in category 4 model 

                                       Notes:  
(1) Volatility (Positive vehicular Jerk: longitudinal direction) – utility function of crash outcome; 

(2) Intersection influence: Traffic Signal – utility function of crash outcome; 

(3) Intercept/Constant term – utility function of crash outcome; 

(4) Maneuver is safe and legal - utility function of crash outcome; 

(5) Not Divided – 2-way Traffic – utility function of near-crash outcome 
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Coming to the effects of volatility on near-crash outcome, the results intuitively suggest that 

increase in segmented volatilities (both longitudinal and lateral direction) increases the 

probabilities of observing near-crash events (Table 5.7). For example, a one-unit increase in 

segmented volatility associated with negative vehicular jerk in longitudinal direction increases 

the probability of near-crash outcome by 64.41 percentage points, compared to only 44.90 

percentage points increase indicated by the fixed parameter counterpart (see marginal effects in 

Table 5.8). However, the parameter estimate for segmented volatility of negative vehicular jerk 

in lateral direction is statistically insignificant in utility function of near-crash outcome and 

deserves further investigation (see Table 5.7). 

 

Finally, we point out that the associations between aggregate vehicular-jerk volatility measures 

and crash propensity are approximately similar in magnitude to the ones between segmented 

volatility measures and crash propensity (see Table 5.7 and Table 5A.1). In terms of probability 

statements, this is reflected in the marginal effects for the best-fit segmented vehicular jerk based 

random parameter model (Table 5.8) and the best-fit aggregate vehicular jerk based random 

parameter model (Table 5A.2). This suggests that the correlations between aggregate volatility 

measures and crash propensity observed in best-fit Category 2 model (as shown in Table 5A.1) 

are reliable, however, the volatility measures in Table 5A.1 are a mix of intentional as well as 

unintentional driving behavior components. Thus, given the theoretical reasoning presented in 

Section 5.3.3, we prefer and regard the results of Category 4 models (Table 5.7) as more 

appropriate as it provides insights about the relationships between “intentional volatility” (and 

which is preventable) and crash propensity.  
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5.6.2 Safety Effects of Secondary Task Durations, Passengers, & Legality of Maneuvers 

The estimation results in Table 5.7 also shed light on the associations between secondary task 

durations, legality of maneuvers, and crash propensity. Secondary tasks in this study primarily 

refer to distractions related to non-driving related glances away from the direction of vehicle 

movement44 (TRB, 2013). The results suggest that a one-second increase in the duration of the 

first secondary task increases the probability of crash outcome and near-crash outcome by 0.0055 

and 0.009 units respectively (Table 5.8). Likewise, a one-second increase in the duration of the 

second secondary task increases the probability of crash and near-crash outcome by 0.30 and 

0.69 percentage points respectively (Table 5.8). These findings are in agreement with previous 

studies (Klauer et al., 2006), and intuitive as any driver distraction for larger amount of time are 

likely to result in unsafe outcomes.  

 

Regarding legality of maneuvers, some interesting findings surfaced from the analysis. It is 

found that if a maneuver is safe (irrespective of being legal or illegal), the likelihood of crashes 

and near-crashes decreases45 (Table 5.7). However, the parameter estimate for maneuver being 

safe and legal in utility function of crash exhibits significant heterogeneity (see Figure 5.6). 

While the direction of effect is consistently negative, the magnitude of negative correlations, 

nonetheless, varies significantly (see box-plot 4 in Figure 5.6). Likewise, if the driver is 

unfamiliar with the roadway, the probability of crash outcome increases by 9.98 percentage 

points, compared to only 2.80 percentage points increase in fixed-parameter model (Table 5.8). 

                                                 
44 Some examples of secondary tasks are radio adjustments, seatbelt adjustments, or looking outside at pedestrians.  

Note that secondary tasks do not include tasks that are critical to the driving task such as speedometer checks, 

mirror/blink spot checks, activating wipers/headlights, or shifting gears (TRB, 2013).  
45 Note that the maneuver is a vehicle-kinematic based measure, and is not related to driver’s engagement in 

secondary tasks and/or distractions. For example, the variable related to legality of maneuvers refer to what the 

vehicle does (movement and position of the vehicle) such as going straight or changing lane, and is not related to 

what the driver is doing inside the vehicle (such as texting and driving). 
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This finding is in agreement with previous studies, e.g., (Klauer et al., 2006). Finally, Category 4 

model suggests that a one-unit increase in number of front seat passengers decreases the 

probability of crash and near-crash outcome by 0.0048 and 0.0188 units respectively (Table 8). 

Again, the associations between passengers, legality of maneuvers, and crash propensity exhibit 

directional consistency in Category 2 (Table 5A.1) and Category 4 (Table 5.7) models. This is 

intuitive as accompanying front seat passenger may alert or warn the driver in case the driver is 

anticipated to undertake an unsafe maneuver or action.   

 

5.6.3 Safety Effects of Roadway and Traffic Flow Factors 

Compared to baseline events, the fixed parameter modeling results suggest that the probability of 

crashes or near-crashes increases at intersections (Table 5.7). Within intersections, the likelihood 

of near-crashes is higher on un-controlled intersections compared to intersections with traffic 

signals (Table 5.7). However, after accounting for potential unobserved heterogeneity, the results 

of random parameter model (Table 5.7) suggest that the relationship between an intersection with 

traffic signal and likelihood of crash outcome is in fact negative (β of -2.46 in random parameter 

model vs. β of 0.50 in fixed parameter model – see Table 5.7). Nonetheless, significant 

heterogeneity in the direction and magnitude of effect is also observed (see box-plot 2 in Figure 

5.6), with negative correlation for 30.67% of the cases and positive for the rest, as opposed to a 

statistically significant and fixed positive correlation in fixed parameter counterpart. This finding 

is important in the sense that it indicates that ignoring unobserved heterogeneity can lead to 

inaccurate or misleading results.  

 

Contrary to intersections which have higher likelihood of safety critical events, the likelihood of 

crashes or near-crashes is on-average lower on roadways (Table 5.7). These findings are intuitive 
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as intersections generally involve more complex movements and larger number of conflicts 

(Chin and Quddus, 2003, Kamrani et al., 2017, Poch and Mannering, 1996, Ye et al., 2009).  

 

Coming to traffic related factors, the results suggest that the likelihood of crashes and/or near-

crashes decreases in free-flow traffic either with no lead traffic present (Level of Service: A1) or 

with lead traffic present (Level of Service: A2) (Table 5.7). Contrarily, the likelihood of near-

crashes increases in in unstable flow and/or dead-flow traffic conditions46. These findings are 

also intuitive as potential of conflict in unstable low and/or dead-flow traffic conditions is higher, 

and thus probability of near-miss may increase (Table 5.8).  

 

5.7 LIMITATIONS/FUTURE WORK 

 

The present study focused on exploring the links between event-based volatility and crash 

propensity irrespective of different types of crash events, such as rear-end, sideswipe, angled, 

roadway departure, etc. In future, a natural extension of the present study would be to examine 

how event-based driving volatility varies across different crash event types. Another natural 

extension of this work would be to analyze the links between event-based driving volatility and 

injury outcomes, given a crash.  

 

5.8 CONCLUSIONS 

 

Driving behavior in general is considered a leading cause of road traffic crashes. Relevant in this 

regard is the concept of “driving volatility” that captures the extent of variations in driving, 

                                                 
46 The variables related to unstable flow and dead-flow traffic conditions were found statistically insignificant in 

utility function of crash outcome.  
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especially hard accelerations/braking and jerky maneuvers. To understand driving volatility prior 

to involvement in safety critical events, detailed microscopic data on instantaneous driving 

decisions and safety outcomes are needed. The present study extended the concept of driving 

volatility to specific events, thus termed as event-based volatility. The SHRP2 Naturalistic 

Driving Study provides relevant sensor, video, and radar based real-world microscopic driving 

data in this regard. The present study adopts a tight quasi-experimental study design to help 

compare driving behaviors in normal vs unsafe outcomes. Specifically, crash propensity is 

defined as likelihood of drivers’ involvement in crash- or near-crash events, compared to normal 

(baseline) driving events. With these forethoughts in mind, the key objective of this study was to 

examine how driving volatility in time-to-crash or near-crash correlates with crash propensity?  

To achieve this, an innovative methodology is proposed for characterization of volatility in 

instantaneous driving decisions in normal and safety-critical events. A total of 2.2 million 

records of real-world driving for 9,593 driving events are analyzed in this study. By using 

information related to longitudinal and lateral accelerations and vehicular jerk, 24 different 

aggregate and segmented measures of driving volatility are proposed. In doing so, intentional as 

well as unintentional event-based driving volatility is characterized, i.e., the issue of actual 

driving behavior (and the volatility therein) and volatility due to evasive maneuvers of driver to 

avoid an unsafe outcome (reverse causality) is carefully addressed. Given the important 

methodological concerns of unobserved heterogeneity and omitted variable bias, fixed- and 

random-parameter discrete choice models were estimated to reach reliable conclusions.  

 

For all eight aggregate volatility measures, there is statistically significant evidence that driver 

volatilities in baseline, near-crash, and crash events are significantly different, with volatilities in 

near-crash and crash events significantly greater than volatility in baseline events. Owing to the 
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issue of intentional vs. unintentional driving volatility, empirical evidence suggests that volatility 

measures based on censored 25-seconds driving data (where the last 5-seconds of entire 30-

seconds driving data prior to unsafe outcomes are not considered) best explain crash propensity. 

After controlling for traffic, roadway, situational, and other unobserved factors, the results 

suggest that greater “intentional” volatility is positively correlated with both crash and near-crash 

events. Importantly, the findings show that greater intentional volatility in negative vehicular jerk 

(longitudinal direction) has more negative consequences than volatility in positive vehicular jerk. 

For example, a one-unit increase in (intentional) volatility of negative vehicular jerk in 

longitudinal direction increases the probability of crash and near crash outcome by 13.86 and 

64.41 percentage points respectively, compared to only 5.21 and 11.97 percentage point increase 

in probability of crash and near crash outcome in case of a unit increase in positive vehicular jerk 

in longitudinal direction respectively. Compared to acceleration/deceleration based volatility 

measures, empirical evidence suggests that vehicular jerk based volatility models best explain 

crash propensity. Finally, the correlations established in this study exhibit significant 

heterogeneity, i.e., the effects of explanatory factors (such as driving volatility) varies across 

different events and that accounting for the heterogeneous effects in the modeling framework can 

provide more accurate and reliable results.  

 

The above volatility related findings have important implications for proactive safety. For 

instance, instantaneous driving decisions can be monitored in real-time and warnings and alerts 

can be issued to drivers in case driver’s decisions in longitudinal and lateral directions exhibit 

greater volatility (especially in braking). Given that instantaneous driving decisions during 

deceleration are more volatile and that the effect of volatility in deceleration on safety outcome is 

more severe, such alerts and warnings can potentially help in improving safety. From a 
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behavioral perspective, the findings originating from our analysis using segmented volatility 

indices indicates that it is not just the driving volatility immediately prior to crash/near-crash 

outcome that is critical, but more importantly the volatility in driving decisions when the driver 

is presumably in control of the vehicle. Given that the volatility in driving decisions well before 

the driver anticipated an unsafe outcome can be regarded as “intentional” volatility, proactive 

real-time warning and control assist applications can significantly enhance safety.  
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5.10 APPENDIX A 
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Table 5A.1: Estimation Results of Random Parameter Logit Models for Crash Propensity with Aggregate Driving Volatility 

Measures* 

Variable 

Category 1 Model (Random 

Parameters Logit)1 

Category 2 Model  

(Random Parameters Logit)2 

Crash Near-Crash Crash Near-Crash 

Coeff z-score Coeff z-score Coeff z-score Coeff z-score 

             Constant -15.15 -13.90 -10.40 -17.02 -29.07 -11.09 -13.10 -16.34 

standard deviation 1.73 4.38 --- --- 2.86 5.44 --- --- 

Key Volatility Indicators         

Volatility (Positive vehicular Jerk: longitudinal direction) --- --- --- --- 3.32 7.11 2.82 8.46 

standard deviation --- --- --- --- 1.23 4.19 0.83 5.11 

Volatility (Negative vehicular Jerk: longitudinal direction) --- --- --- --- 8.70 11.35 7.76 14.75 

Volatility (Positive vehicular Jerk: lateral direction) --- --- --- --- 4.95 6.66 2.55 5.76 

Volatility (Negative vehicular Jerk: lateral direction) --- --- --- --- 5.63 5.88 -0.20 -0.46 

Volatility (Acceleration: longitudinal direction) 1.55 5.37 -0.50 -2.15 --- --- --- --- 

standard deviation 0.81 3.59 --- --- --- --- --- --- 

Volatility (Deceleration: longitudinal direction) 6.61 17.23 8.49 19.70 --- --- --- --- 

standard deviation --- --- 0.8 3.58 --- --- --- --- 

Volatility (Acceleration: lateral direction) 1.85 6.45 0.65 3.66 --- --- --- --- 

standard deviation 1.06 3.66 --- --- --- --- --- --- 

Volatility (Deceleration: lateral direction) 5.92 12.98 3.35 13.10 --- --- --- --- 

Drivers' Secondary Task Durations         

Secondary Task 1 (duration in seconds) 0.27 8.89 0.21 8.97 0.27 5.32 0.24 8.9 

Secondary Task 2 (duration in seconds) 0.17 2.95 0.15 3.24 0.28 2.8 0.15 2.97 

Legality of Maneuvers         

Maneuver is safe and legal -2.67 -9.84 -2.45 -11.74 -4.16 -7.69 -2.85 -12.55 

standard deviation --- --- --- --- 2.93 6.37 --- --- 

Maneuver is safe but illegal -2.39 -4.40 -4.17 -6.18 -2.63 -2.61 -5.53 -6.45 

Notes: (*) Baseline event is considered base category- all parameter estimates to be interpreted relative to baseline event; (1) refers to 

model with acceleration/deceleration based volatility measures as explanatory factors; (2) refers to model with vehicular jerk based 

volatility measures as explanatory factors.  
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Table 5A.1: Estimation Results of Random Parameter Logit Models for Crash Propensity with Aggregate Driving Volatility Measures 

(Continued) 

Variable 

Category 1 Model (Random 

Parameters Logit)1 

Category 2 Model  

(Random Parameters Logit)2 

Crash Near-Crash Crash Near-Crash 

Coeff z-score Coeff z-score Coeff 

z-

score Coeff z-score 

Driver Behavior         

Unfamiliar/inexperience with roadway 2.18 2.23 --- --- 3.46 2.06 --- --- 

Aggressive Driving --- --- 2.89 2.80 --- --- 3.68 3.4 

Front Seat Passengers -0.31 -1.60 -0.44 -2.91 --- --- -0.49 -3.1 

Intersection-Roadway Influence         

Intersection influence: Traffic Signal 0.84 3.64 1.50 8.72 --- --- 1.09 6.05 

Intersection influence: Uncontrolled 1.38 4.03 1.96 7.40 1.99 3.3 2.80 9.2 

Intersection influence: Stop sign 0.82 2.21 1.07 3.47 --- --- --- --- 

Divided Roadway -0.41 -2.28 -0.41 -2.28 -1.72 -3.34 -0.43 -2.14 

Not Divided – 2-way Traffic -0.83 -5.01 -0.37 -1.84 -1.13 -2.85 -0.28 -1.29 

standard deviation --- --- 0.85 2.36 --- --- 1.01 3.72 

Traffic Flow Factors         

Level of Service: A1 --- --- -1.69 -7.38 --- --- -2.40 -8.81 

standard deviation --- --- 1.04 3.19 --- --- 1.13 3.17 

Level of Service: A2 -1.13 -2.83 -0.83 -5.01 -0.71 -1.99 -0.93 -5.36 

standard deviation 1.39 2.20 --- --- --- --- --- --- 

Unstable Flow --- --- 1.42 4.49 --- --- 0.97 2.77 

Dead Flow --- --- 1.19 2.32 --- --- 0.78 1.61 

standard deviation --- --- 1.45 1.99 --- --- --- --- 

Notes: (1) refers to model with acceleration/deceleration based volatility measures as explanatory factors; (2) refers to model with 

vehicular jerk based volatility measures as explanatory factors.  
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Table 5A.2: Marginal Effects of Fixed- and Random-Parameter Category 2 Model 

Variable 

Effects on probabilities of the event outcomes (multiplied by 100) 

Fixed Parameter Logit Model Random Parameter Logit Model 

1 2 3 1 2 3 

Crash        

Volatility 1a -2.13 2.34 -0.21 -2.75 5.58 -2.83 

Volatility 2 b -5.57 6.12 -0.55 -13.13 21.21 -8.07 

Volatility 3 c -2.50 2.74 -0.25 -4.10 8.40 -4.30 

Volatility 4 d -2.04 2.24 -0.20 -5.22 10.20 -4.98 

Secondary Task 1 (duration in seconds) -0.17 0.19 -0.02 -0.10 0.30 -0.19 

Secondary Task 2 (duration in seconds) -0.14 0.15 -0.01 -0.11 0.31 -0.20 

Maneuver is safe and legal 2.03 -2.23 0.20 1.52 -4.51 2.99 

Maneuver is safe but illegal 2.34 -2.57 0.23 0.70 -2.34 1.64 

Unfamiliar/inexperience with roadway -0.92 1.01 -0.09 -2.23 5.09 -2.86 

Intersection influence: Uncontrolled -1.64 1.81 -0.16 -0.98 2.50 -1.52 

Divided Roadway 0.35 -0.39 0.04 0.56 -1.75 1.20 

Not Divided – 2-way Traffic 0.44 -0.49 0.04 0.43 -1.24 0.80 

Level of Service: A2 0.28 -0.31 0.03 0.25 -0.75 0.50 

Near-Crash       

Volatility 1 a -17.99 -0.19 18.19 -13.57 -1.92 15.50 

Volatility 2 b -47.57 -0.52 48.08 -59.26 -4.64 63.89 

Volatility 3 c -18.71 -0.20 18.91 -10.16 -1.80 11.96 

Volatility 4 d -1.02 -0.01 1.03 0.48 0.14 -0.62 

Secondary Task 1 (duration in seconds) -1.50 -0.02 1.50 -0.61 -0.17 0.78 

Secondary Task 2 (duration in seconds) -1.00 -0.01 1.00 -0.38 -0.11 0.49 

Front Seat Passengers 2.50 0.03 -2.52 1.14 0.35 -1.49 

Maneuver is safe and legal 17.98 0.19 -18.18 11.47 1.99 -13.46 

Maneuver is safe but illegal 31.93 0.35 -32.27 7.26 3.38 -10.64 

Aggressive Driving -25.52 -0.28 25.79 -18.16 -2.55 20.70 

Intersection influence: Traffic Signal -5.78 -0.06 5.84 -3.13 -0.79 3.92 

Intersection influence: Uncontrolled -17.08 -0.19 17.27 -11.55 -1.98 13.54 

Divided Roadway -2.63 -0.03 2.66 -1.10 -0.31 1.41 

Not Divided – 2-way Traffic 1.12 0.01 -1.13 0.28 0.19 -0.48 

Level of Service: A1 11.23 0.12 -11.35 5.24 1.79 -7.03 

Level of Service: A2 5.56 0.06 -5.62 2.23 0.66 -2.89 

Unstable Flow -7.01 -0.08 7.09 -2.84 -0.70 3.54 

Dead Flow -5.12 -0.06 5.17 -2.23 -0.56 2.79 

Note: (a) Volatility 1 (Positive vehicular Jerk: longitudinal direction); (b) Volatility 2 (Negative vehicular 

Jerk: longitudinal direction); (c) Volatility 3 (Positive vehicular Jerk: lateral direction); (d) Volatility 4 

(Negative vehicular Jerk: lateral direction); (1) is baseline; (2) is crash; (3) is near-crash; Marginal effects 

(multiplied by 100) rounded to nearest two decimals.  
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CHAPTER 6 THE RELATIONSHIP BETWEEN DRIVING VOLATILITY IN TIME TO 

COLLISION AND CRASH INJURY SEVERITY IN A NATURALISTIC DRIVING 

ENVIRONMENT  
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This chapter presents modified versions of two research papers by Behram Wali, Asad J. 

Khattak, Thomas Karnowski. These papers include:  

Journal Paper (under-review) - “How Driving Volatility in Time to Collision Relates to Crash 

Severity in a Naturalistic Driving Environment?.” Wali. B., Khattak, A.J., Karnowski, 

T. Under-review in Analytic Methods in Accident Research.  

Peer-Reviewed Conference Paper – “How Driving Volatility in Time to Collision Relates to 

Crash Severity in a Naturalistic Driving Environment?” Wali, B., Khattak, A. J., 

Karnowski, T (2018). Presented at the 97th Annual Meeting of the Transportation 

Research Board, Washington DC, USA. TRB PAPER # 18-00060.  

Wali. B., Khattak, A.J., Karnowski, T. (2017). How Driving Volatility in Time to Collision 

Relates to Crash Severity in a Naturalistic Driving Environment? Presented at the 5th 

Annual UTC Conference for the Southeastern Region, University of Florida, 

Gainesville, 2017.  
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ABSTRACT 

 

The sequence of instantaneous driving decisions and its variations, known as driving volatility, 

can be a leading indicator of unsafe driving practices. The research issue is to characterize 

volatility in instantaneous driving decisions in longitudinal and lateral direction and to seek an 

understanding of how driving volatility relates to crash severity. By using a unique real-world 

naturalistic driving database from the 2nd Strategic Highway Research Program (SHRP), a test 

set of 671 crash events featuring around 0.2 million temporal samples of real-world driving are 

analyzed. Based on different driving performance measures, 16 different volatility indices are 

created. To explore correlations between driving volatility and crash severity outcomes, the 

volatility indices are then linked with individual crash events including information on crash 

severity, drivers’ pre-crash maneuvers and behaviors, secondary tasks and durations, and other 

factors. As driving volatility prior to crash involvement can have different components, an in-

depth analysis is conducted using the aggregate as well as segmented (based on time to collision) 

real-world driving data. To account for the issues of observed and unobserved heterogeneity, 

fixed and random parameter ordered models with heterogeneity in parameter means are 

estimated. The empirical results offer important insights regarding how driving volatility in time 

to collision may be related to crash severity outcomes. Overall, statistically significant positive 

correlations are found between the aggregate (as well as segmented) volatility measures and 

crash severity outcomes. The findings suggest that greater driving volatility (both in longitudinal 

and lateral direction) prior to crash occurrence increases the likelihood of police reportable or 

severe crash events. Importantly, compared to the effect of volatility in longitudinal acceleration 

on crash outcomes, the effect of volatility in longitudinal deceleration is significantly greater in 

magnitude. Methodologically, the random parameter models with heterogeneity-in-means 
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significantly outperformed both the fixed parameter and random parameter counterparts; 

underscoring the importance of accounting for both observed and unobserved heterogeneity. The 

relevance of the findings to the development of proactive behavioral countermeasures for drivers 

is discussed. 

 

6.1 INTRODUCTION and BACKGROUND 

 

The recent Traffic Safety Facts published by the National Highway Traffic Safety Administration 

(NHTSA) reported a total of 32,166 fatal traffic crashes and an additional 1,715,000 injury 

crashes in the U.S. (NHTSA, 2016). Of all the fatalities and injuries sustained by vehicle 

occupants, drivers sustained 73% of fatalities and 71% of injuries (NHTSA, 2016). As a result of 

extensive research over the decades (Mannering and Bhat, 2014), a broad spectrum of factors are 

known to be associated with the injury severity outcomes of drivers including drivers’ 

characteristics, crash and roadway factors, vehicle features, weather, and environment-related 

factors (Quddus et al., 2002, Abdel-Aty, 2003, Behnood and Mannering, 2015, Khattak and 

Targa, 2004, Kockelman and Kweon, 2002, Mooradian et al., 2013, Zajac and Ivan, 2003). 

However, among other factors, driving behavior, in general, is considered a leading cause of road 

traffic crashes (RTCs) and the injuries involved therein. A better understanding of driving 

behavior prior to involvement in a crash is fundamental to the design of behavioral 

countermeasures. Thus, several studies have attempted to understand the behavioral correlates of 

injury severity, given a crash, e.g., (Paleti et al., 2010, Zhu and Srinivasan, 2011) (Abdel-Aty, 

2003).  Primarily, the focus has been on what is referred to as “aggressive” driving (such as 

driver was speeding, tailgating, improper lane changes, making obscene gestures, and so on), and 
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its correlation with injury outcomes47 (Nevarez et al., 2009, Paleti et al., 2010, Richards and 

Cuerden, 2009, Weiss et al., 2014). By using “aggressive” driving as a latent construct, Paleti et 

al. (2010) quantified the moderating effect of aggressive driving in increasing injury severity 

outcomes (Paleti et al., 2010). Likewise, as surrogates of driving behavior, higher speeds or 

speed limits are known to be correlated with higher injury severity outcomes (Weiss et al., 2014, 

Abdel-Aty, 2003, Renski et al., 1999, Duncan et al., 1998, Klop and Khattak, 1999, Quddus et 

al., 2009).  

 

For the most part, the analysis of driver-specific behavioral factors correlated with injury 

outcomes mainly builds upon data from traditional police crash reports or crash causation studies 

(Paleti et al., 2010, Mannering and Bhat, 2014) (Imprialou and Quddus, 2017). As acknowledged 

in the literature (Paleti et al., 2010, Mannering and Bhat, 2014) (Imprialou and Quddus, 2017), 

classifying “aggressive” driving based on information (such as speeds, maneuvers, etc.) in police 

crash reports is a subjective process and there exists the possibility of misclassification.  Also, 

the extent to which the speed information in police crash reports, typically used as a measure of 

driving behavior, is accurate is unclear. Importantly, while analysis of such a nature has helped to 

formulate actionable strategies for development of behavioral countermeasures, it does not shed 

light on the actual microscopic driving tasks or decisions that typically precede drivers’ 

involvement in a crash (Kim et al., 2016). Having said this, it is crucial to gain insights regarding 

the sequence of microscopic instantaneous driving decisions (e.g., acceleration/deceleration) 

preceding drivers’ involvement in a crash, and which may determine the injury outcomes. An 

                                                 
47 There exists extensive psychometrics-related literature regarding latent constructs for characterizing aggressive 

driving (Shinar, 1998). However, for brevity we focus on studies linking driving behavior explicitly to injury 

outcomes.  
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analysis of such a nature, however, was not possible until very recent mainly due to the data 

unavailability.  

 

6.1.1 Concept of Driving Volatility 

The rapid technological advancements in recent years have enabled collection of huge amounts 

of spatiotemporal data about the vehicle and human movement. With recent innovations ranging 

from the realization of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) technologies 

such as Dedicated Short Range Communication (DSRC) and WI-FI, to continuous video and 

radar surveillance, the collection of countless terabytes of real-world driving data is now a reality 

(Henclewood, 2014, Campbell, 2012). The real-world driving data generated by advanced 

technologies are large-scale and are not informative to drivers in the raw form (Khattak and Wali, 

2017). However, by using appropriate data analytic techniques, a deeper and richer 

understanding of instantaneous driving decisions can be obtained (Khattak and Wali, 2017). 

Important in this regard is the concept of “driving volatility” that captures the extent of variations 

in driving, especially hard accelerations/braking and jerky maneuvers (Liu et al., 2015b, Liu et 

al., 2017, Liu and Khattak, 2016b, Wang et al., 2015). Driving volatility can be regarded as a 

measure of driving practice for characterizing instantaneous driving decisions, and importantly 

the extreme driving behaviors (Liu and Khattak, 2016b, Khattak and Wali, 2017). Compared to 

traditional surrogates of driving behavior (such as speed and driver demographics), the concept 

of individual-level driving volatility provides personalized and actionable information for 

developing driving feedback devices, warning and control assists systems48 (Liu and Khattak, 

                                                 
48 Note that real-world driving data generated by connected vehicles, radar sensors, or video surveillance are 

typically used for quantifying the extent of variations in instantaneous driving decisions (Liu and Khattak, 2016b, 

Liu et al., 2015b, Khattak and Wali, 2017). Extreme driving behaviors (based on information in police crash reports) 

are generally referred to as “aggressive driving” in the literature (Nevarez et al., 2009, Paleti et al., 2010). However, 
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2016b, Khattak and Wali, 2017). 

 

6.1.2 Driving Volatility and Safety 

A fundamental understanding of instantaneous short-term driving decisions prior to involvement 

in unsafe outcomes (such as crashes) can shed light on the actual mechanism in which a vehicle is 

maneuvered or operated before a crash. Such an understanding is crucial for designing actionable 

proactive behavioral countermeasures. The previous studies characterized driving volatility by 

using rigorous data analytic methodologies (Liu et al., 2015b, Liu et al., 2017, Liu and Khattak, 

2016b, Wang et al., 2015, Khattak and Wali, 2017). However, the volatility was not linked with 

unsafe outcomes such as crashes.  In this regard, a recent study by Kamrani et al. (2017) extended 

the concept of driving volatility to specific locations and proposed a methodology for linking high 

frequency microscopic connected vehicles driving data with historical crashes (Kamrani et al., 

2017). In a similar zeal, Kim et al. (2016) conducted an exploratory study to analyze the association 

between rear-end crash propensity and micro-scale driving behavior (Kim et al., 2016). Both 

studies concluded that hard deceleration rates are associated with rear-end crashes on freeway 

ramps (Kim et al., 2016) and total crashes at signalized intersections (Kamrani et al., 2017). 

Innovative, proactive safety strategies were discussed (Kamrani et al., 2017, Kim et al., 2016). It 

seems reasonable to expect that the variations in microscopic driving behaviors immediately prior 

to crash involvement, termed as driving volatility, can be majorly correlated with crash outcomes, 

i.e., near-crash vs. crash or injury outcomes given a crash. The previous studies focused on crash 

frequency (propensity) and not on the outcomes of crashes per se (Kamrani et al., 2017, Kim et al., 

                                                 
we prefer to use a neutral term, driving volatility, to refer to the variations in real-world microscopic driving 

performance and the extreme (potentially unsafe) behaviors therein.  
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2016). Also, the analysis in previous studies is aggregated in nature, i.e., location-specific driving 

behavior data are used to explain historical crashes at such locations. As such, insights regarding 

how driving volatility immediately prior to the crash may be related to driver’s propensity of 

receiving injuries cannot be obtained.  

 

6.1.3 Research Objective and Contribution 

The main objective of this study is to investigate correlations between driving volatility and 

injury severity. To achieve this, a tight quasi-experimental study design is adopted to quantify 

real-world driving volatility immediately prior to involvement in a crash, and how it relates to 

injury outcomes sustained by drivers. In particular, the study uses a unique Naturalistic Driving 

database of drivers involved in crash events. For all the crash events, large-scale microscopic 

instantaneous driving data immediately prior to involvement in crashes are analyzed, and 

volatility indices created using different driving performance measures. To explore correlations 

between driving volatility and injury severity outcomes, the volatility indices are then linked 

with individual crash events including information on injury severity, event-specific variables 

such as drivers’ pre-crash maneuvers and behaviors, traffic flow factors, secondary tasks and 

durations, roadway factors, and fault status (discussed later). Careful attention is given to the 

issue of both observed and unobserved heterogeneity (Mannering et al., 2016). From a 

methodological standpoint, fixed and random parameter discrete choice ordered models are 

estimated to account for both observed and unobserved heterogeneity. Unlike commonly-used 

random parameters models that typically assume the same mean for each random parameter, the 

present study also accounts for the possible heterogeneity in the means of the random parameters 

which vary as a function of several observed factors.  
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By using advanced modeling methods, the study contributes by seeking a fundamental 

understanding of short-term microscopic driving volatility, and how can we map driving 

volatility to injury severities sustained by drivers in crashes. Such an analysis is critical for 

designing proactive behavioral countermeasures as it can highlight moments of volatile 

(potentially unsafe) instantaneous driving decisions prior to involvement in crashes, and which 

may be linked with the drivers’ injury outcomes.  

 

6.2 METHODOLOGY 

 

6.2.1 Conceptual Illustration 

To understand the relationship between driving volatility and injury outcomes (given a crash), 

detailed microscopic instantaneous driving data are needed. The currently on-going SHRP2 

Naturalistic Driving Study (NDS) provides relevant data (TRB, 2013). A key aspect of the 

SHRP2 NDS study is that it provides information on real-world driving decisions undertaken by 

drivers prior to involvement in a crash event. Crash is defined as any contact that the subject 

instrumented vehicle has with an object (moving or fixed) at any speed in which kinetic energy is 

measurably transferred or dissipated (Hankey et al., 2016). Figure 6.1 presents the conceptual 

framework describing the overall study structure. Importantly, the instantaneous driving data are 

event specific (in our case event is crash), and thus facilitate analysis of driving volatility and its 

correlation with injury outcomes while controlling for a wide variety of traffic, roadway, and 

behavioral factors in the event detail table (Figure 6.1).  
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Figure 6.1 Conceptual framework 

(Note: The original data resolution is 10 Hz, i.e., one-tenth of a second. However, the x-axis is 

labelled in seconds (1 Hz) for ease of presentation.)  

 

The data from on-board data acquisition systems can be used to characterize volatility in 

instantaneous driving decisions (Figure 6.1). In particular, the on-board data acquisition systems 

installed in vehicles provide high-resolution motion data at a frequency of 10 Hz (Hankey et al., 

2016). The on-board units collect data on instantaneous longitudinal and lateral acceleration 

profiles for the entire trip. However, compared to drivers’ performance throughout the entire trip, 

instantaneous driving decisions immediately prior to involvement in safety-critical events are 

more relevant and crucial. Therefore, the SHRP2 NDS provides 30 seconds instantaneous motion 

data for every safety critical event (i.e., crash). The 30-second driving behavior data can be 

interpreted as driving decisions undertaken immediately before the occurrence of a crash (Figure 

6.1).  
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6.2.2 Components of Volatility 

Figure 6.1 shows a 30-seconds acceleration/deceleration profile prior to involvement in a crash. 

By using large-scale data analytic techniques, driving volatility can be characterized for each of 

the crash events. Broadly speaking, the volatility indices for each event can be regarded as 

measures of driving performance (or erratic behavior) before involvement in crash events. 

Linking driving volatility indices based on 30-seconds data can shed light on how instantaneous 

driving decisions are linked with injury outcomes. We hypothesize a positive correlation between 

driving volatility and injury outcomes. Any correlation, if exists, can provide fundamental 

knowledge about how driving decisions may influence crash outcomes. With real-world driving 

data based volatility indices (Figure 6.1), proactive behavioral countermeasures can be planned 

for drivers that are consistently more volatile. 

 

However, using the entire 30-seconds driving data aggregates the driving volatility. For example, 

volatility in driving decisions prior to involvement in a crash may contain separate components, 

i.e., “intentional volatility” by the driver (due to aggressive self-driving when the driver is in 

control), and “unintentional” volatility due to evasive maneuvers or loss of control immediately 

before the crash. The earlier may be reflected in instantaneous driving data 20 to 30 seconds 

before the crash, and as such may be “intentional” volatility by the driver, i.e., the driver has not 

yet anticipated the crash but is undertaking erratic driving behavior. The later (unintentional or 

situational volatility) can be reflected in driving data immediately before the crash (e.g., 10 

seconds before). We call it “unintentional volatility” as the driver may have already anticipated 

the crash in this case and is undertaking preventive measures to avoid the crash, i.e., evasive 

maneuvers. Also, the volatility 10-seconds before the crash is also likely to contain volatility due 
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to loss of control before the crash. As such, we also consider generating segmented volatility 

indices based on different time bins, and which can separate out how volatility in time to 

collision (bins) is related to injury outcomes (Figure 6.1). 

 

6.2.3 Calculation of Volatility 

Different instantaneous driving performance measures such as vehicle speeds, 

accelerations/decelerations, and/or steering angles can be used for estimation of volatility indices 

in longitudinal directions (Quddus, 2013b, Liu and Khattak, 2016b). The present study uses 

acceleration/deceleration profiles for generation of volatility indices. Typically, the deceleration 

profiles are known to exhibit larger variations (Kamrani et al., 2017, Kim et al., 2007). Thus, 

separate volatility indices are created for capturing variations in instantaneous longitudinal 

acceleration and deceleration profiles. In particular, coefficient of variation (𝐶𝑣) is used as a 

measure for characterizing driving volatility prior to crash occurrence. Compared to standard 

deviation or variance, coefficient of variation (𝐶𝑣) is scale insensitive, and this property allows 

meaningful comparisons between the volatility in instantaneous driving decisions in different 

crash events. To compute volatility for each crash event, acceleration and deceleration values are 

separated, and means and variances calculated for both. Then, 𝐶𝑣 is obtained by dividing the 

standard deviations of accelerations (and decelerations) to the mean values, i.e., 𝜎/𝜇. The 

process is repeated for all crash events, and both by using the entire 30-seconds data and bin-

wise 10 seconds data (Figure 6.1). In total, eight volatility measures are computed for 

longitudinal direction (shown later).  

 

Instantaneous driving decisions in the lateral dimension, such as lane change decisions, are also 

important as larger variations in lateral dimension may also be correlated with unsafe outcomes 
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(Wang et al., 2015). Having said this, separate volatility indices (for acceleration and 

deceleration) are also generated for instantaneous driving decisions in the lateral dimension. As 

shown in Figure 6.1, both aggregate and bin-wise data are used for calculation of volatility 

indices, and which can better characterize the complex mechanism of instantaneous driving 

decisions prior to involvement in a crash event. This resulted in a total of eight volatility 

measures in the lateral dimension.  

 

6.2.4 Statistical Models 

Once the volatilities indices (18 different volatility measures) are calculated for each crash event, 

the correlations between injury severity and driving volatility are explored while controlling for 

different observed and unobserved factors. Past research has extensively used a variety of 

methodological alternatives for modeling crash-related injury severity including multinomial or 

binary probit/logit models, ordered choice models, and nested logit models (Mannering and 

Bhat, 2014). For a detailed review of methodological alternatives, see Mannering and Bhat 

(2014) (Mannering and Bhat, 2014). Keeping in view the ordinal nature of the response outcome 

(crash severity), ordered probit framework is used to model injury severity as a function of 

driving volatility and other factors (Washington et al., 2010, Abdel-Aty, 2003, Khattak and 

Rocha, 2003, Quddus et al., 2002, Quddus et al., 2009). Following the work presented in 

(Washington et al., 2010, Duncan et al., 1998), consider: 

𝑌𝑖
∗ = 𝛽𝑿𝑖 + 휀𝑖 ,    Equation 6.1 

 

Where: 𝑌𝑖
∗ is the dependent variable coded as 0, 1, 2, and 3 for crash 𝑖; 𝛽 is the vector of 

parameter estimates; 𝑿𝑖 is the vector of independent variables; and 휀𝑖 is the normally distributed 
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error term with density function 𝜑(. ) and cumulative distribution ∅(. ). Given a specific injury 

severity outcome, an individual crash falls in category 𝑛 if 𝜇𝑛−1 < 𝑦 < 𝜇𝑛. The observed injury 

outcome data, 𝑌, are related to the underlying latent variable 𝑌𝑖
∗ through thresholds 𝜇𝑛, where 

𝑛 = 1,2,3 (Duncan et al., 1998). In this context, the ordered probability of each different injury 

outcome for each crash 𝑖 can be estimated as: 

𝑃(𝑌 = 𝑛) =  ∅(𝜇𝑛 − 𝛽𝑿) − ∅(𝜇𝑛−1 − 𝛽𝑿) Equation 6.2 

 

 

Where: 𝜇𝑜 = 0, 𝜇3 = +∞, and 𝜇1 < 𝜇2 are the two thresholds between which the ordered 

responses are estimated (Wali et al., 2017b). To quantify the effects of the independent variables 

on the probability of each injury-severity level, and especially on the intermediate levels, 

marginal effects can be computed as: 

𝜕𝑃𝑟𝑜𝑏(𝑌 = 𝑛)

𝜕𝑿
=  −[ 𝜑(𝜇𝑛 − 𝛽𝑿) −  𝜑(𝜇𝑛+1 − 𝛽𝑿)]𝛽,      𝑛 = 1,2,3 

Equation 6.3 

 

Following (Train, 2003), as marginal effects can be different at different levels of explanatory 

factors.  Therefore, the average marginal effects over the sampled events are estimated.  

 

6.2.4.1 Observed and Unobserved Heterogeneity  
 

The key focus of this study is to investigate correlations between driving volatility related 

measures and crash-injury severity outcomes. Crash-injury severity outcomes can be influenced 

by different factors, some of which are observed while other factors are unobserved in the data at 

hand. Data extracted from police-reported crash forms, traffic and local weather stations, and in 

some cases highway-asset-management systems have been historically used to understand the 

factors associated with injury severity outcomes (Mannering and Bhat, 2014). However, with the 
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existing databases, there exists a real possibility that data on all the factors known to influence 

injury severity outcomes may not be available for analysis.  For example, detailed information 

about driver-related behavioral variables is not usually available, and such variables may be 

correlated with crash-injury outcomes. Likewise, while safety-feature indicators (air-bags 

deployment, safety belts usage etc.) are typically available in traditional datasets, the 

effectiveness of these safety features in reducing crash-injury severity may vary across different 

crashes due to driver-specific characteristics such as height, health conditions, and bone density 

(to name a few), and such information is not typically available in traditional crash datasets 

(Mannering et al., 2016). These factors (potentially important) constitute what is referred to as 

“unobserved heterogeneity” in the safety literature (Mannering et al., 2016), and which is 

reflective of the possibility of systematic variations in the effects of explanatory factors across 

the sample population due to unobserved factors49. As explicitly noted in (Mannering et al., 

2016), emerging data sources such as naturalistic driving (and which is used in this study) 

provide additional valuable data but still may not be enough to fully model the factors correlated 

with crash-injury severity outcomes (Mannering et al., 2016). Such unobserved factors can 

potentially introduce heterogeneity in the effects of observed explanatory factors on crash-injury 

severity. Recall that the focus of the current study is to understand the relationship between 

crash-injury severity and driving volatility. The driving volatility indices are calculated based on 

the vehicle kinematics data collected by on-board units installed in vehicles participating in the 

naturalistic driving study. As noted in Mannering et al. (2016), the kinematics data are vehicle-

specific (and driver-specific), and can vary significantly across different vehicles and drivers, 

and which can introduce heterogeneity in the effects of “observed” driving volatility-related 

                                                 
49 For a detailed discussion on why unobserved heterogeneity may make the effects of explanatory factors vary 

across the sample, interested readers are referred to Mannering et al. (2016).  
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variables on crash-injury severity. In addition, if important explanatory factors are omitted from 

the models, and appropriate methodological remedies not taken, it may happen that the 

“observed” correlation between driving volatility and crash-injury severity outcome may be an 

outgrowth of those omitted factors, and not “true” correlation between volatility and crash-injury 

severity outcomes. 

 

Given this important methodological concern, statistical methods that can account for 

unobserved heterogeneity in the crash-injury severity analysis have fairly become a 

methodological standard (Mannering and Bhat, 2014, Mannering et al., 2016). By allowing the 

effects of exogenous explanatory factors to vary across individual crashes (or segments of 

population), more efficient, precise, and richer insights can be obtained. To account for 

unobserved heterogeneity, a broad spectrum of studies have successfully used different 

methodological alternatives including random parameter models (Anastasopoulos and 

Mannering, 2009, Zhao and Khattak, 2015, Alarifi et al., 2017, Bhat et al., 2017), random 

parameter models with heterogeneity in means (Behnood and Mannering, 2017b, Venkataraman 

et al., 2014), random parameter models with heterogeneity in means and variances (Behnood and 

Mannering, 2017a, Seraneeprakarn et al., 2017), latent-class models (Eluru et al., 2012, Yasmin 

et al., 2014, Shaheed and Gkritza, 2014), latent class models with random parameters (Xiong and 

Mannering, 2013), Markov-switching models (Malyshkina and Mannering, 2009, Malyshkina et 

al., 2009, Khattak and Wali, 2017), and Markov-switching models with random parameters 

(Xiong et al., 2014b). For a detailed discussion on the advantages and limitations of each of these 

methods, see Mannering et al. (2016). In the current study, we account for (possible) systematic 

variations in the effects of explanatory factors through random parameter modeling technique. To 
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account for the unobserved heterogeneity in the ordered outcome probability process, random 

parameters can be introduced as (El-Basyouny and Sayed, 2011, El-Basyouny and Sayed, 2009a, 

Li et al., 2017, Milton et al., 2008): 

𝛽𝑖 = 𝛽 + 𝚼휁𝑖 Equation 6.4 

 

Where: 𝛽 is the mean of random parameter vectors, 𝚼 is the diagonal matrix with standard 

deviations for random parameters, and 휁𝑖 is a randomly distributed random term that captures 

unobserved heterogeneity across crashes (Mannering et al., 2016, Tay, 2015). In particular, the 

distribution for 휁𝑖 is specified by the analyst where different distributions can be tested 

(discussed later). The estimation proceeds with Maximum Simulated Likelihood procedures 

where Halton draws (compared to random draws) are used in the simulation process. In this 

study, 1000 Halton draws are used for parameter estimation, nonetheless, 200 Halton draws are 

reported to produce accurate parameter estimates (Bhat, 2003). Regarding function form of the 

parameter density functions, we have tested normal, lognormal, triangular, uniform, and Weibull 

distributions. Further details can be found in (Anastasopoulos and Mannering, 2009, Bhat, 2003).  

 

While the mathematical formulation in Equation 6.4 accounts for unobserved heterogeneity by 

estimating different set of crash-specific parameter estimates 𝛽𝑖, nonetheless, the mean parameter 

estimate (𝛽) is still fixed across all the crashes. Unlike commonly-used random parameters 

models shown above that typically assume the same mean for each random parameter, we also 

allow the means of random parameters to vary across crashes as a function of observed 

explanatory factors. Thus, Eq. 4 becomes (Venkataraman et al., 2014, Behnood and Mannering, 

2017b): 
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𝛽𝑖 = 𝜷 + 𝝃𝒁𝒊 + 𝚼휁𝑖 Equation 6.5 

 

Where: 𝛽 is the mean parameter estimate across all crashes 𝑖, 𝒁𝒊 is a vector of explanatory 

factors from crash 𝑖 which influence the mean of 𝛽𝑖, 𝝃 is the parameter vector associated with 𝒁𝒊, 

and 𝚼휁𝑖 are as defined earlier that accounts for unobserved heterogeneity across different 

crashes. In addition to accounting for unobserved heterogeneity, the formulation in Equation 6.5 

now also accounts for observed heterogeneity by allowing the means of random parameters to 

vary as a function of specific observed factors. This can help extract richer insights from the data 

at hand50.  

 

6.3 DATA 

 

This study uses data from an on-going Naturalistic Driving Study (NDS) conducted as part of the 

2nd Strategic Highway Research Program (SHRP2) (TRB, 2013). The SHRP2 NDS is the largest 

naturalistic driving environment till date including 3,400 participant drivers with over 4,000 

years of real-world naturalistic driving data collected between 2010 and 2013 (Hankey et al., 

2016).  In particular, this study uses the “event data” and “continuous” time-series data collected 

                                                 
50 Compared to the traditional random parameter (with fixed-means) models, Behnood and Mannering (2017b) 

found that accounting for heterogeneity-in-means in logit models resulted in better fit and substantially difference 

inferences (Behnood and Mannering, 2017b). In addition, recent studies have extended the heterogeneity-in-means 

approach to also account for heterogeneity-in-variances (Behnood and Mannering, 2017a, Seraneeprakarn et al., 

2017). In a random parameter model with both heterogeneity in means and variances, Equation 6.5 becomes βi =
𝛃 + 𝛏𝐙𝐢 + 𝛔𝐢𝐞𝐱𝐩(ℵ𝐢𝐁𝐢)𝐯 𝐢 (Behnood and Mannering, 2017a). Where, 𝐁𝐢 is a vector of explanatory factors that 

captures heterogeneity in the standard deviation of random parameter (𝛔𝐢), ℵ𝐢 is a parameter vector associated with 

𝐁𝐢, and 𝐯 𝐢 is the disturbance term. The study by Seraneeprakam et al. (2017) found significant differences in the 

magnitudes of direct marginal effects for random parameters logit models with no mean-variance heterogeneity, 

with mean-only heterogeneity, and with both mean-variance heterogeneity (Seraneeprakarn et al., 2017). Likewise, 

Behnood and Mannering (2017a) noticed that constraining the means and variances of random parameters without 

statistical validation can result in model specification error, further leading to misguided policies (Behnood and 

Mannering, 2017a). We discuss the results of our attempts to estimate random parameter models with heterogeneous 

means and variances later in the results section.  
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as part of the NDS. For drivers involved in crashes, the event data table provides detailed 

information on pre-incident maneuvers, legality of maneuvers, driver behavior, secondary tasks, 

start and end times, if applicable, of first, second, and third secondary events. Also included in 

the data is information about front-seat and rear-seat passengers, intersection and roadway type 

indicators, and traffic flow related factors. Secondary tasks are defined as any observable driver 

engagement other than the key driving tasks, and which may begin at any point during the 5 

seconds prior to the event start, i.e., crash in this case, through the end of the event (TRB, 2013).  

 

A total of 671 crash events are analyzed in this study in which 501 distinct drivers are involved, 

i.e., some participants had more than one crash during the study period. A notable feature of the 

NDS database is the availability of vehicle’s motion data prior to involvement in a crash event. 

For the thousands of instrumented participant vehicles, advanced data acquisition systems (DAS) 

are used that collect four video views (driver’s face, driver’s hand, forward roadway, and rear 

roadway), vehicle network and status information (speed, brake, acceleration), and information 

from additional sensors networked with the DAS (e.g., accelerometers) (TRB, 2013). As 

discussed earlier, 30 seconds instantaneous motion data for every safety-critical event (i.e., 

crash) are provided. The 30-second driving behavior data can be interpreted as driving decisions 

undertaken immediately before the occurrence of a crash (Figure 6.1). The time-series data 

contain information about longitudinal and lateral accelerations, speeds, gas pedal and steering 

wheel position, and wiper status. As such, a total of 2.2 million records of real-world driving is 

processed and finally around 200,000 (i.e., crash-related motion data) instantaneous motion 

packets used for calculation of 16 different volatility measures. The detailed event data are 

finally linked to the event-specific volatility indices for subsequent analyses.  
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6.4 RESULTS 

 

6.4.1 Descriptive Statistics 

Table 1 presents the descriptive statistics of key variables used in this study. In the SHRP2 NDS 

database, the crash severity is coded into four categories: low-risk tire strike, minor crash, police-

reportable crash, and most severe crash. For detailed definitions of the different response 

outcome categories, see Hankey et al. (2016) (Hankey et al., 2016). As shown in Table 6.1, 

approximately 40% and 38% of crashes resulted in low-risk tire strike and minor crash 

respectively. Whereas, 13.3% and 8.8% of crashes were police-reportable crashes and most 

severe crashes respectively (Table 6.1).  

 

As discussed earlier, the study focuses on analyzing the correlations between crash severity and 

event-specific driving volatility. Thus, descriptive statistics of aggregate volatility measures 

calculated using the entire 30-seconds pre-crash motion data are presented (Table 1). Both for 

volatility measures in longitudinal and lateral direction, and for acceleration and deceleration, the 

volatility distributions on-average are highly dispersed, as shown by the coefficient of variation 

values of greater than one (Table 6.1). In addition, the coefficient of variations for all the four 

volatility measures exhibits significant standard deviations, suggesting considerable variations in 

volatilities across the different crash events (Table 6.1). An interesting finding is that the 

volatility in lateral acceleration is greater than the volatility in longitudinal acceleration (Table 

6.1). This may reflect the evasive maneuvers (such as abrupt lane change) that drivers’ may 

undertake to avoid the obstacle in front of them once they anticipate a crash.   

 

Compared to aggregate volatility measures, the descriptive statistics for segmented volatility 
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indices are next presented in Table 6.1. Such a segmentation can separate out the different 

components of volatility (intentional vs. unintentional) and can shed light on how volatility in 

time to collision is related to the crash severity (Table 6.1).  

 

Several important insights can be obtained. First, the distributions of segmented volatility 

measures (estimated based on time to collision) are on-average similar (see mean and standard 

deviations of bin-wise volatility indices in Table 6.1). It seems that for the sampled crashes, 

drivers were not just volatile immediately before a crash (i.e., third 10-second bin) but also 

exhibited erratic or volatile behavior 20-30 seconds before the crash. Based on the discussion 

presented in earlier sections, this also implies that intentional vs. unintentional volatility is on-

average similar in magnitude. Thus, the question then becomes how intentional volatility may be 

associated with crash severity outcomes?   

 

Second, for all the three bin-wise volatility indices, volatility in longitudinal deceleration on-

average is greater than volatility in longitudinal acceleration. Given a crash, this suggests that 

drivers on-average are more volatile during deceleration immediately prior to crash occurrence. 

This finding is in agreement with the literature (Kamrani et al., 2017, Kim et al., 2007).   

Third, similar to the aggregate volatility indices, the volatility in lateral acceleration is greater 

than the volatility in longitudinal acceleration for the bin-wise volatility measures too. This 

finding is intuitive and may be an outgrowth of the crash avoidance maneuvers undertaken by 

the drivers in the lateral direction.  
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The descriptive statistics of other variables are also presented in Table 6.1. For the sampled crash 

events, the mean speed is approximately 29 kilometers per hour. In 35.9% of the crashes, drivers 

did not engage in secondary tasks, whereas drivers were texting in 3.9% of the crashes (Table 

6.1). Importantly, durations of secondary tasks are also available. On average, drivers spent 3.58, 

0.77, and 0.14 seconds on first, second, and third secondary task respectively. In addition, drivers 

undertook safe and legal maneuver in 72% of the crashes, safe and illegal maneuver in 2.5% of 

the crashes, unsafe and illegal maneuver in 14.5% of the crashes, and unsafe but legal maneuvers 

in 10.4% of the crashes. For a detailed description of maneuver judgement related variables, see 

(Hankey et al., 2016).  

 

To check for multicollinearity, variance inflation factors (VIF) are checked for all the 

explanatory variables. A VIF value of less than 10 indicates a lack of problematic 

multicollinearity. In our case, VIF values for all explanatory factors are less than 3; however, the 

values are not shown due to space constraints. Finally, the descriptive statistics of a variety of 

other variables can be interpreted in a similar way (Table 6.1).  
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Table 6.1 Descriptive Statistics of Key Variables 
Category Variable Name N Mean SD Min Max 

Dependent 

Variable: Crash 

severity 

Low-risk tire strike 671 0.404 0.491 0 1 

Minor crash 671 0.376 0.485 0 1 

Police-reportable crash 671 0.133 0.339 0 1 

Most severe 671 0.088 0.283 0 1 

Volatility based 

on entire 30-

seconds driving 

data 

Coefficient of variation: longitudinal 

acceleration 668 1.027 0.518 0.267 4.552 

Coefficient of variation: longitudinal 

deceleration 668 1.203 0.624 0.075 6.093 

Coefficient of variation: lateral acceleration 665 1.370 0.614 0.345 5.920 

Coefficient of variation: lateral deceleration 666 1.201 0.548 0.156 4.268 

Speed Mean Speed (KPH) 668 28.875 21.851 0 121.17 

Volatility based 

on first 10-

seconds bin 

Coefficient of variation: longitudinal 

acceleration 665 0.980 0.453 0.163 4.497 

Coefficient of variation: longitudinal 

deceleration 666 1.145 0.545 0.074 4.240 

Coefficient of variation: lateral acceleration 661 1.273 0.560 0.347 5.918 

Coefficient of variation: lateral deceleration 659 1.122 0.529 0.160 3.723 

Volatility based 

on second 10-

seconds bin 

Coefficient of variation: longitudinal 

acceleration 661 0.959 0.429 0.048 4.046 

Coefficient of variation: longitudinal 

deceleration 662 1.127 0.591 0.039 6.019 

Coefficient of variation: lateral acceleration 655 1.278 0.566 0.265 4.480 

Coefficient of variation: lateral deceleration 661 1.099 0.521 0.122 3.869 

Volatility based 

on third 10-

seconds bin 

Coefficient of variation: longitudinal 

acceleration 643 0.969 0.447 0.263 4.171 

Coefficient of variation: longitudinal 

deceleration 648 1.118 0.542 0.042 6.008 

Coefficient of variation: lateral acceleration 642 1.278 0.577 0.289 6.566 

Coefficient of variation: lateral deceleration 644 1.096 0.509 0.031 4.821 

Passengers 

Number of front seat passengers (including 

driver) 671 1.250 0.434 1 2 

Number of rear seat passengers 671 0.103 0.430 0 3 

Travel lanes 
Number of through lanes 671 1.213 0.939 0 5 

Number of contiguous travel lanes* 671 3.3 1.58 1 9 

Secondary tasks 

Holding cell phone 671 0.028 0.166 0 1 

Talking on cell phone: hand-held 671 0.033 0.178 0 1 

Texting on cell phone 671 0.039 0.193 0 1 

No secondary task 671 0.359 0.480 0 1 

Duration of 

secondary tasks 

Duration in seconds of first secondary task 671 3.585 4.192 0 24.119 

Duration in seconds of second secondary 

task 671 0.772 2.031 0 14.221 

Duration in seconds of third secondary task 671 0.145 1.045 0 13.878 

Incident 

maneuvers 

Changing lanes 671 0.031 0.174 0 1 

Negotiating a curve 671 0.075 0.263 0 1 

Notes: N is sample size; SD is standard deviation; KPH is kilometers per hour  
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Table 6.1 Descriptive Statistics of Key Variables (Continued) 
Category Variable Name N Mean SD Min Max 

Maneuver 

judgement 

 Maneuver is safe and legal 671 0.723 0.448 0 1 

Maneuver is safe and illegal 671 0.025 0.157 0 1 

Maneuver is unsafe and illegal 671 0.145 0.352 0 1 

Maneuver is unsafe but legal 671 0.104 0.306 0 1 

Nature of 

events 

Conflict with a following vehicle 671 0.054 0.225 0 1 

Conflict with lead vehicle 671 0.098 0.298 0 1 

Driver 

Behavior 

Exceeded safe speed but not speed limit 671 0.054 0.225 0 1 

Exceeded speed limit 671 0.037 0.190 0 1 

Distracted 671 0.311 0.463 0 1 

Made turn, cut corner on right 671 0.146 0.353 0 1 

Roadway 

factors 

Intersection influence: Traffic Signal 671 0.185 0.388 0 1 

Intersection influence: Uncontrolled 671 0.083 0.277 0 1 

Intersection influence: Stop sign 671 0.063 0.242 0 1 

Divided Roadway 671 0.219 0.414 0 1 

Not Divided – 2-way Traffic 671 0.484 0.500 0 1 

Traffic factors 

Level of Service: A1 (Free flow, no lead 

traffic) 671 0.562 0.497 0 1 

Level of Service: A2 (Free flow, leading 

traffic present) 671 0.180 0.385 0 1 

Level of Service: B (Flow with some 

restrictions) 671 0.180 0.385 0 1 

Level of Service: Stable flow, 

maneuverability and speed more restricted 671 0.049 0.216 0 1 

Driver hand 

status 

Both hands on wheels 671 0.465 0.499 0 1 

Left hand only 671 0.325 0.469 0 1 

Right hand only 671 0.143 0.350 0 1 

None 671 0.039 0.193 0 1 

Seat-belt use 
Lap/shoulder belt properly worn 671 0.900 0.300 0 1 

None used 671 0.085 0.279 0 1 

Light 

conditions 

Darkness, lighted 671 0.204 0.403 0 1 

Darkness, not lighted 671 0.046 0.210 0 1 

Daylight 671 0.708 0.455 0 1 

Weather 

factors 

Mist/Light rain 671 0.058 0.234 0 1 

No adverse weather 671 0.860 0.347 0 1 

Heavy rain 671 0.061 0.240 0 1 

Locality 

Business/industrial 671 0.463 0.499 0 1 

Moderate residential 671 0.204 0.403 0 1 

Open residential 671 0.049 0.216 0 1 

School 671 0.079 0.270 0 1 

Urban 671 0.079 0.270 0 1 

Fault status 
Other driver (Driver 2) on fault 671 0.088 0.283 0 1 

Subject driver on fault 671 0.854 0.353 0 1 

Notes: N is sample size; SD is standard deviation.  
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6.4.2 Modeling Results 

The empirical models focus on analyzing the correlations between crash severity and event-

specific driving volatility, after controlling for a wide variety of observed factors (Table 6.1) and 

unobserved factors. Two different model specifications are presented: 1) the first specification 

models crash severity as a function of aggregate volatility indices and other factors, and 2) the 

second specification models crash severity as a function of segmented volatility indices and other 

factors. For ease of discussion, we will refer to the two specifications as specification 1 and 2.  

 

6.4.2.1 Model Specification 1 
 

For specification 1, Table 6.2 presents the model estimation results for the fixed parameter 

ordered probit, random parameter ordered probit, and random parameter ordered probit with 

heterogeneity-in-means. All the models are derived from a systematic process to include most 

important variables (such as driving volatility related factors and others) on the basis of statistical 

significance, specification parsimony, and intuition. First, fixed parameter ordered probit models 

are developed in which the parameter estimates were constrained to be fixed across all the crash 

events (Table 6.2). As discussed earlier, unobserved heterogeneity and omitted variable bias can 

be suspected, and in the presence of which precise and unbiased correlations cannot be 

established. Thus, random parameter ordered probit models are estimated that allowed the 

parameter estimates to vary across different crash events (Table 6.2).  A variable is treated as 

random when the parameter estimates either exhibited only statistically significant standard 

deviations or exhibited both statistically significant means and standard deviations (Fountas and 

Anastasopoulos, 2017). In the earlier case, both likelihood ratio test and AIC statistic are 

examined to compare the model treating the specific variable (with only statistically significant 

standard deviation) as random parameter with the model treating the same variable as fixed  
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Table 6.2 Model Estimation Results for Crash Severity in Naturalistic Driving Environment 

(First-Specification)  

Variable Name 
Model 1 Model 2 Model 3 

β t-stat β t-stat β t-stat 

Volatility based on entire 30-seconds driving 

data       

Coefficient of variation: longitudinal 

acceleration 0.267 2.75 0.476 4.04 0.391 3.18 

Coefficient of variation: longitudinal 

deceleration 0.956 11.89 1.895 15.30 0.976 3.26 

standard deviation  --- --- 0.817 14.97 0.715 14.17 

Coefficient of variation: lateral acceleration 0.207 2.42 0.304 3.13 0.308 3.16 

Coefficient of variation: lateral deceleration 0.139 1.53 0.197 1.91 0.245 2.38 

Mean Speed (KPH) 0.010 3.87 0.014 4.29 0.009 2.49 

Heterogeneity in means       

Coefficient of variation (longitudinal 

deceleration): Subject driver on fault --- --- --- --- 1.102 3.46 

Exceeded safe speed but not speed limit: 

Unsafe and illegal --- --- --- --- 1.982 3.43 

Business/industrial: Duration in seconds of 

first secondary task --- --- --- --- 0.061 2.4 

Divided Roadway: Darkness but road lighted --- --- --- --- -1.002 -3.39 

Divided Roadway: Mean Speed (KPH) --- --- --- --- 0.020 3.5 

Secondary tasks and durations       

Texting on cell phone 0.503 2.20 0.676 2.24 0.716 2.35 

Duration in seconds of first secondary task 0.033 2.88 0.059 4.45 0.032 1.93 

Duration in seconds of second secondary task 0.047 2.12 0.080 2.99 0.078 2.88 

Driver hand status       

Both hands on wheels -0.147 -1.48 -0.236 -2.04 -0.259 -2.24 

Maneuver judgement       

 Maneuver is safe and legal -0.352 -2.71 -0.534 -3.42 -0.551 -3.48 

Maneuver is safe and illegal -0.409 -1.29 -0.599 -1.69 -0.683 -1.88 

Driver behavior       

Exceeded safe speed but not speed limit 0.162 0.70 0.434 1.55 0.116 0.38 

standard deviation  --- --- 1.650 6.28 0.733 3.04 

Exceeded speed limit 0.19 0.72 0.434 1.41 0.433 1.4 

standard deviation  --- --- 1.008 3.79 1.177 4.38 

Passengers and through lanes       

Number of rear seat passengers 0.131 1.24 0.271 2.1 0.272 2.11 

Number of through lanes 0.129 2.03 0.093 1.24 0.062 0.84 

standard deviation  --- --- 0.230 6.23 0.107 3.02 

Roadway factors       

Intersection influence: Traffic Signal 0.135 1.05 0.319 2.2 0.433 2.95 

Intersection influence: Uncontrolled -0.237 -1.40 -0.383 -1.89 -0.211 -1.05 

Divided Roadway -0.053 -0.40 -0.081 -0.51 -0.567 -2.05 

standard deviation --- --- 0.800 6.38 1.192 8.51 

Notes: (Model 1) Fixed Parameter Ordered Probit Model; (Model 2) Random Parameter Ordered Probit 

Model; (Model 3) Random Parameter Ordered Probit - Heterogeneity-in-Means Model; β is parameter 

estimate; (---) indicates not applicable; KPH is kilometers per hour. 
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Table 6.2 Model Estimation Results for Crash Severity in Naturalistic Driving Environment 

(First-Specification) (Continued) 

Variable Name 
Model 1 Model 2 Model 3 

β t-stat β t-stat β t-stat 

Fault Status       

Other driver (Driver 2) on fault 0.9671 3.73 1.498 4.82 1.4787 4.7 

Subject driver on fault -0.6127 -2.96 -1.221 -4.72 -2.4926 -5.1 

Locality       

Business/industrial -0.1752 -1.79 -0.319 -2.78 -0.5475 -3.55 

standard deviation (normally 

distributed) --- --- 0.620 7.26 0.7356 8.36 

Summary statistics       

Constant -1.2502 -3.81 -1.883 -4.69 -0.5268 -0.95 

Threshold 1 1.5175 21.99 2.534 16.18 2.5249 16.03 

Threshold 2 2.4314 25.75 4.308 18.27 4.2514 18.31 

Number of parameters 24 30 35 

Log-likelihood at constant -814.7498 -814.7498 -814.7498 

Log-likelihood at convergence -599.119 -580.749 -569.4407 

McFadden R2  0.2646 0.2872 0.301 

AIC 1246.2 1221.5 1208.9 

Notes: (Model 1) Fixed Parameter Ordered Probit Model; (Model 2) Random Parameter Ordered Probit 

Model; (Model 3) Random Parameter Ordered Probit - Heterogeneity-in-Means Model; β is parameter 

estimate; AIC is Akaike Information Criteria. 

 

parameter (Fountas and Anastasopoulos, 2017). With fixed β’s and varying 𝚼, the random 

parameter model accounts for the systematic variations in the effects of variables across the 

sample population due to unobserved factors. A total of six variables are found to be normally 

distributed random parameters suggesting that their effects vary across crash events. These 

variables are: Coefficient of variation: longitudinal deceleration, exceeded safe speed but not 

speed limit, exceeded speed limit, number of through lanes, divided Roadway, and 

business/industrial location (Table 6.2). 

 

To also account for observed heterogeneity (discussed earlier), random parameter models with 

heterogeneity-in-means are estimated. The results of best-fit random parameter heterogeneity-in-

means model are presented in Table 6.2. Importantly, in addition to accounting for unobserved 
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heterogeneity, the random parameter heterogeneity-in-means approach now also accounts for 

observed heterogeneity by allowing the means of random parameters to vary as a function of 

specific observed factors. Five of the six random parameters produced significant heterogeneity 

in the means as well (see Table 6.2). For the coefficient of variation in longitudinal direction, a 

subject driver at fault increased the mean making low-risk tire strike or minor crash less likely 

(Table 6.2). For indicator variable for exceeded safe speed but not speed limit (Table 6.2), 

crashes where driver undertook unsafe and illegal maneuver also increased the mean making 

lower order outcomes less likely. Evaluated at the mean duration of the first secondary task and 

mean speed, crashes occurring in business/industrial location and divided roadways also 

exhibited higher means suggesting a higher probability of severe crash outcome (Table 6.2). 

Finally, for divided roadway indicator, crash events occurring at dark but lighted roads exhibited 

lower means suggesting a higher likelihood of low-risk tire strike crash event.  

To justify the use of different models, goodness-of-fit measures such as likelihood ratio test, AIC, 

and McFadden R2 are used. After accounting for the degrees of freedom, random parameter 

ordered probit model outperformed its fixed parameter counterpart (Table 6.2), as reflected in 

lower AIC value, higher McFadden R2, and likelihood ratio test favoring the random parameter 

model (see bottom panel of Table 6.2). Next, accounting for observed heterogeneity further 

resulted in better fit as shown by the relatively best goodness-of-fit statistics of random 

parameter heterogeneity-in-mean model51 (Table 6.2). From an explanatory power standpoint, 

                                                 
51 As discussed in methodology section and keeping in view the results of Behnood and Mannering (2017a) and 

Seraneeprakam et al. (2017), we tested both for heterogeneity in the means as well as variances of random 

parameters. The possible heterogeneity in the means and variances of random parameters was tested as a function of 

different explanatory factors shown in Table 1. While random parameter models with heterogeneity-in-means 

significantly outperformed the random parameter models with fixed-mean, almost all our attempts to estimate 

models with both heterogeneity-in-means and variances faced convergence issues. In some rare instances, the 

models with both heterogeneity-in-means and variances converged but with statistically insignificant variances or 

poor fit (in terms of log-likelihood at convergence and Akaike Information Criteria) compared to random parameter 

models with heterogeneity-in-means only. For example, compared to the best-fit random parameter model with 



 

 

 

255 

 

several variables that were statistically insignificant in fixed parameter model became 

statistically significant in random parameter counterparts.  For example, a total of 21 explanatory 

factors is included, out of which only 11 variables are found to be statistically significant at 95% 

confidence level in the fixed parameter model. Whereas, 18 out of the 21 explanatory factors 

exhibited statistically significant means and/or standard deviations each in the random parameter 

and random parameter heterogeneity-in-means models respectively, with additional statistically 

significant heterogeneity in means parameter estimates in the later one (see Table 6.2). All of 

these findings demonstrate the significant potential of heterogeneity based models (both 

observed and unobserved) in extracting richer insights from the data at hand.  

 

6.4.2.2 Model Specification 2 
 

For specification 2, the results of the fixed parameter ordered probit, random parameter ordered 

probit, and random parameter ordered probit with heterogeneity-in-means are presented in Table 

6.3. The main motivation behind the specification presented in Table 6.3 is to separate out the 

different components of volatility (intentional vs. unintentional), and which can shed light on 

how volatility in time to collision is related to crash severity (Table 6.3).  

 

 

 

 

 

                                                 
heterogeneity-in-means only (Table 6.2 - log-likelihood at convergence of -569.44, degrees of freedom = 35), the 

log-likelihood of heterogeneity-in-means and variances model was -569.12 (degrees of freedom = 41) indicating 

poor fit. As such, we present and discuss the results of random-parameter models with heterogeneity-in-means in 

this paper. The results of models with heterogeneity-in-means and variances can be obtained from the authors upon 

request.   
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Table 6.3 Model Estimation Results for Crash Severity in Naturalistic Driving Environment 

(Second-Specification)  

Variable Name 
Model 1 Model 2 Model 3 

β t-stat β t-stat β t-stat 

Volatility based on first 10-seconds driving data       

Coefficient of variation: longitudinal acceleration 0.2918 2.12 0.620 3.35 0.690 3.45 

Coefficient of variation: longitudinal deceleration 0.6212 4.46 1.597 8.16 1.774 8.21 

Coefficient of variation: lateral acceleration 0.1872 1.59 0.473 3.02 0.582 3.45 

Coefficient of variation: lateral deceleration 0.2321 2.14 0.502 3.44 0.601 3.8 

Volatility based on second 10-seconds driving data       

Coefficient of variation: longitudinal acceleration --- --- --- --- --- --- 

Coefficient of variation: longitudinal deceleration 0.2148 1.64 0.288 1.68 0.232 1.25 

standard deviation  --- --- 1.431 14.8 1.661 14.42 

Coefficient of variation: lateral acceleration 0.2063 1.69 0.315 1.91 0.391 2.15 

Coefficient of variation: lateral deceleration --- --- --- --- --- --- 

Volatility based on third 10-seconds driving data       

Coefficient of variation: longitudinal acceleration 0.1368 1.04 0.349 1.99 0.417 2.17 

standard deviation  --- --- 0.337 5.32 0.506 7.12 

Coefficient of variation: longitudinal deceleration 0.4275 3.35 1.272 6.94 1.593 7.8 

Coefficient of variation: lateral acceleration -0.3827 -3.12 -0.942 -5.41 -1.154 -6.07 

Coefficient of variation: lateral deceleration 0.0747 0.66 0.233 1.56 0.694 3.61 

standard deviation  --- --- 0.458 7.77 0.212 3.7 

Mean Speed (KPH) 0.0083 3.29 0.018 5.19 0.021 5.57 

Heterogeneity in means       

Coefficient of variation (longitudinal 

acceleration): Unsafe and illegal --- --- --- --- 0.448 1.78 

Coefficient of variation (lateral deceleration): 

Darkness but road lighted --- --- --- --- -1.696 -4.91 

Secondary tasks and durations       

Texting on cell phone 0.428 1.76 0.877 2.71 0.968 2.82 

Duration in seconds of first secondary task 0.0313 2.58 0.065 3.97 0.073 4.16 

Duration in seconds of second secondary task 0.0372 1.58 0.082 2.55 0.086 2.58 

Driver hand status       

Both hands on wheels -0.1552 -1.49 -0.510 -3.58 -0.668 -4.3 

standard deviation  --- --- 0.819 7.55 1.213 9.42 

None  0.5014 1.85 1.401 3.53 1.763 4.17 

Maneuver judgement       

 Maneuver is safe and legal -0.4480 -3.91 -0.902 -5.69 -0.710 -3.38 

Maneuver is safe and illegal -0.4505 -1.43 -0.762 -1.85 -0.605 -1.32 

Through lanes       

Number of through lanes 0.1354 2.31 0.203 2.46 0.205 2.34 

standard deviation  --- --- 0.664 11.4 0.76 11.58 

Roadway factors       

Intersection influence: Traffic Signal 0.2244 1.72 0.719 3.99 0.828 4.27 

Notes: (Model 1) Fixed Parameter Ordered Probit Model; (Model 2) Random Parameter Ordered Probit 

Model; (Model 3) Random Parameter Ordered Probit - Heterogeneity-in-Means Model; β is parameter 

estimate; (---) indicates not applicable; KPH is kilometers per hour. 
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Table 6.3 Model Estimation Results for Crash Severity in Naturalistic Driving Environment 

(Second-Specification) (Continued) 

Variable Name 
Model 1 Model 2 Model 3 

β t-stat β t-stat β t-stat 

Fault Status       

Subject driver on fault -1.2617 -8.86 -3.239 -12.41 -3.6563 -12.31 

Light and Weather        

Darkness, lighted -0.15332 -1.27 -0.223 -1.38 1.613 3.88 

Mist/Light rain 0.6581 3.29 1.176 3.95 1.3906 4.29 

standard deviation --- --- 2.491 7.24 3.1175 7.95 

Summary statistics       

Constant -0.9518 -3.05 -1.613 -3.82 -2.5741 -5.24 

Threshold 1 1.49 21.20 3.583 14.71 4.1188 14.14 

Threshold 2 2.3755 25.24 6.082 15.92 7.0168 15.07 

Number of parameters 26 32 34 

Log-likelihood at constant -814.7498 -814.7498 -814.7498 

Log-likelihood at convergence -566.2787 -552.2533 -546.99 

McFadden R2  0.3049 0.32218 0.3281 

AIC 1184.6 1168.5 1163.1 

Notes: (Model 1) Fixed Parameter Ordered Probit Model; (Model 2) Random Parameter Ordered Probit 

Model; (Model 3) Random Parameter Ordered Probit - Heterogeneity-in-Means Model; β is parameter 

estimate; AIC is Akaike Information Criteria. 

 

In the random parameter ordered probit model with segmented volatility indices (Table 6.3), a 

total of six variables are found to be normally distributed random parameters suggesting that 

their effects vary across crash events. These variables are coefficient of variation: longitudinal 

deceleration (2nd bin data), coefficient of variation: longitudinal acceleration (3rd bin data), 

coefficient of variation: lateral deceleration (3rd bin data), both hands on wheels, number of 

through lanes, and indicator variable for mist/light rain (Table 6.3). To conceptualize the 

heterogeneity in “direction of effects” of the random parameters, distributional statistics are 

provided in Table 6.4. Two of the six random parameters also exhibited significant heterogeneity 

in the means as well (see results of random parameter heterogeneity-in-means model in Table 

6.3). For the coefficient of variation in longitudinal direction, unsafe and illegal action increased 

the mean parameter estimate making high order crash outcome more likely (Table 6.3). 

Contrarily, for coefficient of variation in lateral deceleration, crashes occurring in darkness but 
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on lighted roads decreased the mean of random parameter suggesting higher likelihood of low 

order crash outcome (Table 6.3).  

 

A total of 23 variables are included in the specification presented in Table 6.3, out of which only 

10 are statistically significant at 95% confidence level in the fixed-parameter model (Table 6.3). 

Significant improvements are observed for the random-parameters counterparts; 20 and 22 

variables out of 23 are found statistically significant in the random parameter ordered probit and 

random-parameter ordered probit with heterogeneity-in-means. Regarding goodness of fit, the 

random parameter model with heterogeneity in means resulted in best fit52 (see statistics in the 

lower panel of Table 6.3).  

 

Finally, to help conceptualize the distribution effects of random-held parameters, key 

distributional statistics are provided in Table 6.4, whereas, Table 6.5 presents the marginal 

effects of best-fit random parameter heterogeneity-in-means models. It is important to note that 

for all the models presented in Table 6.2 and 6.3, the statistically significant heterogeneity-in-

means underscores the importance of our model specification for the SHRP2 NDS data used. 

Interesting findings regarding the correlations between driving volatility (particularly regarding 

segmented volatility), speed, secondary tasks and durations, maneuver judgments, and crash 

severity outcomes are discussed next.  

 

                                                 
52 Again, we tested for the possibility of heterogenous variances in addition to heterogeneous means for random 

parameters, but we faced convergence issues or if converged, the model exhibited poor fit. For instance, the log-

likelihood at convergence of heterogeneity in means and variance model was -551.48 (degrees of freedom = 40) 

compared to the log-likelihood at convergence of -546.99 (degrees of freedom = 34) for best-fit random parameter 

model with heterogeneity in means (Table 6.3).  
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Table 6.4 Distribution Effects of the Random Parameters in Random Parameter Ordered Probit 

and Random Parameter Ordered Probit with Heterogeneity-in-the-Means. 

Variables 

Random Parameter 

Ordered Probit Model 

Random Parameter 

Ordered Probit - 

Heterogeneity-in-

Means Model 

Below 

zero 

Above 

zero 

Below 

zero 

Above 

zero 

Model specification 1 (Table 2) 

Volatility based on entire 30-seconds 

driving data     

Coefficient of variation: longitudinal 

deceleration 1.02% 98.98% 8.61% 91.39% 

Driver behavior     

Exceeded safe speed but not speed 

limit 39.63% 60.37% 43.71% 56.29% 

Exceeded speed limit 33.34% 66.66% 35.65% 64.35% 

Through lanes     

Number of through lanes 34.30% 65.70% 28.21% 71.79% 

Roadway factors     

Divided Roadway 54.03% 45.97% 68.29% 31.71% 

Locality     

Business/industrial 69.66% 30.34% 77.16% 22.84% 

Model specification 2 (Table 3) 

Volatility based on second 10-seconds 

driving data     

Coefficient of variation: longitudinal 

deceleration 42.02% 59.98% 44.45% 55.55% 

Volatility based on third 10-seconds 

driving data     

Coefficient of variation: longitudinal 

acceleration 15.02% 84.98% 20.49% 79.51% 

Coefficient of variation: lateral 

deceleration 30.55% 69.45% 0.0005% 99.95% 

Driver hand status     

Both hands on wheels 73.33% 26.67% 70.19% 29.09% 

Through lanes     

Number of through lanes 37.99% 62.01% 39.33% 60.67% 

Light and Weather      

Mist/Light rain 31.84% 68.16% 32.78% 67.22% 
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Table 6.5 Marginal Effects of the Random Parameters Heterogeneity-in-Means Models 

Variable Name 

Specification 1:Random Parameter 

Ordered Probit: Heterogeneity-in-

Means Model 

Specification 2:Random Parameter 

Ordered Probit: Heterogeneity-in-

Means Model 

1 2 3 4 1 2 3 4 

Volatility based on entire 

30-seconds driving data         

CV: longitudinal 

acceleration -0.137 0.136 0.002 1.88E-05 --- --- --- --- 

CV: longitudinal 

deceleration -0.342 0.338 0.004 4.70E-05 --- --- --- --- 

CV: lateral 

acceleration -0.108 0.107 0.001 1.48E-05 --- --- --- --- 

CV: lateral 

deceleration -0.086 0.085 0.001 1.18E-05 --- --- --- --- 

Volatility based on first 

10-seconds driving data         

CV: longitudinal 

acceleration --- --- --- --- -0.067 0.053 0.014 1.81E-06 

CV: longitudinal 

deceleration --- --- --- --- -0.172 0.136 0.033 4.65E-06 

CV: lateral 

acceleration --- --- --- --- -0.057 0.045 0.012 1.53E-06 

CV: lateral 

deceleration --- --- --- --- -0.058 0.046 0.012 1.58E-06 

Volatility based on 

second 10-seconds 

driving data         

CV: longitudinal 

deceleration --- --- --- --- -0.023 0.018 0.005 0.00E+00 

CV: lateral 

acceleration --- --- --- --- -0.038 0.030 0.008 1.02E-06 

Volatility based on third 

10-seconds driving data         

CV: longitudinal 

acceleration --- --- --- --- -0.040 0.032 0.009 1.09E-05 

CV: longitudinal 

deceleration --- --- --- --- -0.155 0.122 0.033 4.18E-05 

CV: lateral 

acceleration --- --- --- --- 0.112 -0.088 -0.024 -3.02E-06 

CV: lateral 

deceleration --- --- --- --- -0.067 0.053 0.014 -1.82E-06 

Mean Speed (kph) -0.0031 0.0031 0.0004 0 -0.002 0.002 0.000 0.00E+00 

Notes: CV is coefficient of variation; KPH is kilometers per hour; (1) Low-risk tire strike; (2) Minor 

crash; (3) Police reportable; (4) Most severe; Marginal effects across rows for competing models may not 

sum up to zero due to rounding.  
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Table 6.5 Marginal Effects of the Random Parameters Heterogeneity-in-Means Models 

 (Continued) 

Variable Name 

Specification 1:Random Parameter 

Ordered Probit: Heterogeneity-in-Means 

Model 

Specification 2:Random Parameter 

Ordered Probit: Heterogeneity-in-

Means Model 

1 2 3 4 1 2 3 4 

Secondary tasks & 

durations         

Texting on cell 

phone -0.2754 0.2670 0.008 2.25E-04 -0.045 -0.014 0.059 5.27E-05 

Duration in 

seconds of first 

secondary task -0.0114 0.0113 0.0001 1.50E-06 -0.007 0.006 0.001 0.00E+00 

Duration in 

seconds of second 

secondary task -0.0273 0.0271 0.0003 3.76E-06 -0.008 0.007 0.002 0.00E+00 

Driver hand status         

Both hands on 

wheels 0.0903 -0.0892 -0.001 -1.28E-05 0.069 -0.055 -0.014 -2.51E-06 

None --- --- --- --- -0.052 -0.175 0.227 1.40E-04 

Maneuver 

judgement         

 Maneuver is 

safe and legal 0.2021 -0.1985 -0.003 -6.02E-05 0.056 -0.033 -0.022 -6.58E-06 

Maneuver is safe 

and illegal 0.1917 -0.1906 -0.001 -1.03E-05 0.092 -0.086 -0.007 0.00E+00 

Driver behavior         

Exceeded safe 

speed but not speed 

limit -0.042 0.041 0.0006 7.26E-06 --- --- --- --- 

Exceeded speed 

limit -0.163 0.160 0.003 6.14E-05 --- --- --- --- 

Passengers & 

through lanes         

Number of rear 

seat passengers -0.095 0.094 0.001 1.31E-05 --- --- --- --- 

Number of 

through lanes -0.022 0.022 0.0003 2.99E-06 -0.020 0.016 0.004 0.00E+00 

Roadway factors         

Intersection 

influence: Traffic 

Signal -0.160 0.158 0.002 4.62E-05 -0.054 0.020 0.034 1.57E-05 

Intersection 

influence: 

Uncontrolled 0.071 -0.070 -0.0007 -6.98E-06 --- --- --- --- 

Divided 

Roadway 0.180 -0.178 -0.002 -1.69E-05 --- --- --- --- 

Notes: (1) Low-risk tire strike; (2) Minor crash; (3) Police reportable; (4) Most severe; Marginal effects 

across rows for competing models may not sum up to zero due to rounding.  
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Table 6.5 Marginal Effects of the Random Parameters Heterogeneity-in-Means Models 

 (Continued) 

Variable Name 

Specification 1:Random Parameter 

Ordered Probit: Heterogeneity-in-

Means Model 

Specification 2:Random 

Parameter Ordered Probit: 

Heterogeneity-in-Means Model 

1 2 3 4 1 2 3 4 

Other driver 

(Driver 2) on fault -0.538 0.492 0.045 3.30E-04 --- --- --- --- 

Subject driver on 

fault 0.755 -0.571 -0.179 -4.31E-03 0.123 0.633 -0.74 -1.39E-02 

Locality         

Business/industrial 0.189 -0.186 -0.002 -3.13E-05 --- --- --- --- 

Light and Weather          

Darkness, lighted --- --- --- --- -0.08 -0.03 0.122 2.58E-04 

Mist/Light rain --- --- --- --- -0.05 -0.01 0.124 2.83E-04 

Notes: (1) Low-risk tire strike; (2) Minor crash; (3) Police reportable; (4) Most severe; Marginal effects 

across rows for competing models may not sum up to zero due to rounding.  

 

6.5 DISCUSSION 

 

6.5.1 Safety Effects of Driving Volatility 

The results and findings discussed here refer to the random-parameter models with 

heterogeneity-in-means given its relatively best fit. Overall, a statistically significant positive 

correlation is found between the four aggregate volatility measures and crash severity outcomes 

(Table 6.2). This suggests that greater driving volatility (both in longitudinal and lateral) 30-

seconds prior to crash occurrence increases the likelihood of police reportable or severe crash 

events and decreases the likelihood of low-risk tire strike.  See the marginal effects in Table 5 

which measure the change in resulting probability of each ordinal outcome due to a unit change 

(or change from “0” to “1” for dummy variables) in the value of the specific independent 

variable (Quddus et al., 2002). Importantly, compared to the effect of volatility in longitudinal 

acceleration (𝛽 = 0.391), the effect of volatility in longitudinal deceleration on crash outcome is 
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significantly greater in magnitude (𝛽 = 0.976). For instance, a unit increase in volatility in 

longitudinal direction increases the probability of minor crash and police reportable crash by 

0.1355 and 0.0015 units respectively. Importantly, a unit increase in volatility in longitudinal 

deceleration increases the probability of minor crash and police reportable crash by 0.3382 and 

0.0039 units respectively (Table 6.5). However, the parameter estimates for coefficient of 

variation in longitudinal deceleration exhibited heterogeneity with positive effects for 91.39% of 

crashes and negative effects for 8.61% of crashes (Table 6.4). Also, as discussed in previous 

section, volatility in longitudinal deceleration also exhibited significant heterogeneity in the 

means as well, with mean of parameter estimates for volatility in longitudinal deceleration 

increasing when the subject driver is at-fault (see Table 6.3). Note that, mean speed 30-seconds 

prior to crash is also included in the specification which intuitively suggests that higher speeds 

are associated with high order crash outcomes (Table 6.2).  

 

While the above findings regarding volatility and crash outcomes are interesting and new, the 

findings do not shed light on how volatility in time to collision is related to crash severity. This is 

important in the sense that if drivers’ (intentional) volatility well in advance of a crash (20-30 

seconds before the crash) is positively correlated with crash outcomes, control assists and 

warnings can be given to drivers in real-time to reduce the unsafe and erratic driving behavior 

and decrease the likelihood of severe crash outcomes. Having said this, the results presented in 

Table 6.3 offer important insights. The parameter estimates for all (except one) segmented 

volatility measures shown in Table 6.3 are positive and statistically significant.  

 

The volatility measures calculated based on the first bin of 10-seconds driving data (Figure 6.1) 
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are found to be fixed parameters, and all positively associated with crash outcomes. This 

suggests that greater longitudinal and lateral volatility in driving decisions well in advance of a 

crash (likely to be intentional volatility) increase the likelihood of high order crash outcomes. A 

unit-increase in volatility in longitudinal acceleration increases the probability of a police-

reportable crash by 0.0141 units, compared to a 0.0327-unit increase for a unit increase in 

volatility in longitudinal deceleration (see marginal effects in Table 6.5). Likewise, a one-unit 

increase volatility in lateral acceleration and lateral deceleration increases the probability of 

police-reportable crash by 1.19 and 1.23 percentage points respectively (Table 6.5).  

 

The volatility measures calculated based on second bin of 10-seconds driving data are also 

positively correlated with crash outcomes. However, the parameter estimate for the coefficient of 

variation in longitudinal deceleration is normally distributed random parameter with significant 

heterogeneity (see Table 6.4). Two volatility measures based on the second bin of driving data 

were statistically insignificant and thus are excluded from the model specifications in Table 6.3. 

However, note that including these two insignificant variables have no significant effect on the 

parameter estimates of other volatility measures.  

 

Finally, the volatility indices based on third 10-seconds driving data (i.e., immediately prior to 

the crash), and likely to be unintentional volatility, are also positively associated with crash 

outcomes (Table 6.3). In particular, two of the volatility measures (one for longitudinal 

acceleration and other for lateral deceleration) are found to be random parameters with 

significant variation in magnitudes of parameter estimates albeit lesser variation in the direction 

of effects (Table 6.4). Finally, the parameter estimate for volatility in the lateral direction is 
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negative and statistically significant. This may require further investigation in future studies.  

 

The above volatility related findings have important implications for proactive safety. For 

instance, instantaneous driving decisions can be monitored in real-time and warnings and alerts 

can be issued to drivers in case driver’s decisions in longitudinal and lateral directions exhibit 

greater volatility (especially well ahead of the crash). Given that instantaneous driving decisions 

during deceleration are more volatile and that the effect of volatility in deceleration on crash 

outcome is more severe, such alerts and warnings can potentially help in improving safety.  

 

6.5.2 Safety Effects of Secondary Task Durations, Driver hand status and Legality of Maneuvers 

The results also quantify the association between secondary tasks and crash severity outcomes. 

For brevity, we only discuss results of random-parameter ordered probit model with 

heterogeneity-in-means under specification 2 (Table 6.3). Results suggest that drivers texting on 

cell phones increases the likelihood of police-reportable crash and decreases likelihood of minor 

crash (Table 6.5). Note that this variable is statistically insignificant in the fixed-parameter 

counterpart (Table 6.3). Likewise, a one-second increase in durations of first and second 

secondary task increases the likelihood of a police-reportable crash by 0.149 and 0.176 

percentage points (Table 6.5). Again, the variable related to the duration of the second secondary 

task was not statistically significant in the fixed-parameter counterpart (Table 6.3).  

 

Regarding driver’s hand status, results reveal that if both hands are on wheels, the likelihood of 

low-risk tire strike increases (Table 6.5). However, the parameter is normally distributed random 

parameter with positive and negative effects for 70.19% and 29.09% of the crash events (Table 

6.4). Contrarily, if none of the driver’s hand are on wheels, the likelihood of a police-reportable 
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crash increases by 0.2263 units (Table 6.5). Again, this variable is statistically insignificant in the 

fixed-parameter counterpart (Table 6.3). From an empirical perspective, these findings reveal the 

importance of incorporating heterogeneity in crash modeling.  Finally, if a driver’s maneuver is 

safe and legal, the likelihood of low-order injury outcomes intuitively increases.  

 

6.5.3 Safety Effects of Other Factors 

Several other factors such as the number of through lanes, signalized intersections, crash events 

in darkness but on lighted roads, and crashes in mist or light rain are positively associated with 

crash severity outcomes. However, the association between indicator variable for mist/light rain 

exhibited significant heterogeneity in the direction of effects across crash events; with positive 

parameter estimates for 67.22% of crashes and negative for the rest (Table 6.4). Another 

interesting finding relates to the fault-status of the driver. If the subject driver is at-fault, the 

likelihood of high order crash outcomes (for the subject driver) decreases. While the fault-status 

of the other driver (driver 2) is not statistically significant in specification 2 (Table 6.3), the 

results of specification 1 show that if the other driver is at-fault, the likelihood of receiving high 

order crash outcomes (for subject driver) increases (Table 6.2). Although this finding is in line 

with past research that shows that not-at-fault drivers tend to be more severely injured (Russo et 

al., 2014), this requires further investigation in future by simultaneously analyzing the crash 

outcomes of not-at-fault and at-fault driver in the context of the current study.   

 

6.6 LIMITATIONS/FUTURE WORK 

 

The present study is based on a sample of ~ 9800 events (baseline, near-crash, and crash events), 

out of which 671 were identified as crash events. However, the SHRP2 NDS Event Detail Table 

(EDT) currently has 36,816 records, out of which 1,469 are crash events 



 

 

 

267 

 

(https://insight.shrp2nds.us/data/index). The authors used a subset of EDT due to lack of access 

to the entire SHRP2 NDS database. With regard to future work, there are several pathways for 

extending the proposed framework. As more data become publicly available, the methodology 

presented in this study can be expanded. Another extension of the research can be to apply the 

proposed methodology to specific roadway types. Regarding the methodological framework, this 

study used ordinal framework given the ordinal nature of the response outcome. In future, it will 

be interesting to compare ordered and unordered discrete choice models for exploring 

associations between driving volatility and crash severity (Zhao and Khattak, 2015).  

 

6.7 CONCLUSIONS 

 

Driving volatility captures the extent of variations in driving, especially hard 

accelerations/braking and jerky maneuvers. It can be regarded as a measure of driving practice 

for characterizing instantaneous driving decisions, and importantly extreme driving behaviors. 

The main objective of this study was to investigate correlations between driving volatility and 

injury severity. To achieve this, a tight quasi-experimental study design is adopted to quantify 

real-world driving volatility immediately prior to the involvement in a crash, and how it relates 

to injury outcomes sustained by drivers. A unique Naturalistic Driving database of drivers 

involved in crash events is used. The raw microscopic driving data are complex and not 

informative to drivers. Thus, we propose a rigorous data analytic methodology to extract critical 

information embedded in real-world driving data. For all the crash events, large-scale 

microscopic instantaneous driving data immediately prior to involvement in crashes are 

analyzed, and volatility indices created using different driving performance measures. Driving 

volatility before involvement in the crash events may contain separate components, i.e., 

https://insight.shrp2nds.us/data/index
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intentional vs. unintentional volatility. Thus, a total of 16 volatility indices are proposed, i.e., four 

aggregate volatility indices based on entire 30-seconds pre-crash data and 12 segmented 

volatility indices based on bin-wise data. For the empirical analysis, the volatility indices are 

then linked with individual crash events including data on crash severity, event-specific variables 

such as drivers’ pre-crash maneuvers and behaviors, traffic flow factors, secondary tasks and 

durations, roadway factors, and fault status. Separate crash severity outcome models are 

presented using aggregated and bin-wise volatility measures.  

 

Overall, statistically significant positive correlations are found between the four aggregate 

volatility measures and crash severity outcomes. This suggests that greater driving volatility 

(both in longitudinal and lateral direction) 30-seconds prior to crash occurrence increases the 

likelihood of police reportable or severe crash events, and decreases the likelihood of low-risk 

tire strike. Importantly, compared to the effect of volatility in longitudinal acceleration on crash 

outcomes, the effect of volatility in longitudinal deceleration is significantly greater in 

magnitude. Compared to the aggregate volatility measures, the results obtained from models with 

segmented volatility indices offer important insights. The parameter estimates for all (except 

one) segmented volatility measures are positive and statistically significant. In particular, an 

increase in driving volatility, both longitudinal and lateral, well in advance of a crash (likely to 

be intentional volatility) increase the likelihood of severe crash outcomes. Likewise, the 

longitudinal volatility indices immediately before the crash (i.e., 3rd bin of 10-seconds driving 

data) are also positively correlated with crash outcomes. Other interesting findings are discussed 

in detail. The above volatility related findings have important implications for proactive safety. 

For instance, instantaneous driving decisions can be monitored in real-time, and warnings and 
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alerts can be issued to drivers in case driver’s decisions in longitudinal and lateral directions 

exhibit greater volatility. Given that instantaneous driving decisions during deceleration are more 

volatile, and that the effect of volatility in deceleration on the crash outcome is more severe, such 

alerts and warnings can potentially help in improving safety.  

 

From an empirical perspective, the study contributes by presenting fixed- and random-parameter 

(with heterogeneity-in-means) discrete choice ordered models that account for both observed and 

unobserved heterogeneity. Unlike commonly-used random parameters models that typically 

assume the same mean for each random parameter, the models also account for possible 

(observed) heterogeneity in the means of the random parameters which vary as a function of 

several observed factors. To justify the use of different models, goodness-of-fit measures such as 

likelihood ratio test, AIC, and McFadden R2 are used. After accounting for degrees of freedom, 

random-parameter ordered probit model outperformed its fixed parameter counterpart. Next, 

accounting for observed heterogeneity further resulted in a better fit and was reflected in the 

relatively best goodness-of-fit statistics of random parameter heterogeneity-in-mean model. 

From an explanatory power standpoint, several variables that were statistically insignificant in 

fixed parameter model became statistically significant in random parameter counterparts. A total 

of 23 variables is included in the final specification, out of which only 10 variables are 

statistically significant in the fixed-parameter model, whereas 22 variables are statistically 

significant in the random parameter ordered probit model with heterogeneity-in-means. 
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CHAPTER 7 CONCLUSIONS AND IMPLICATIONS 

 

This dissertation addressed the grand challenge of harnessing big data generated by connected 

vehicles and naturalistic driving systems to answer new questions using new statistical 

techniques. Driven by big data for science and engineering (S&E), we are at a cusp on a major 

transformation in transportation, where the future at the human-technology frontier needs to be 

researched. Among other factors, driving behavior is a critical and most unpredictable 

component of the surface transportation system, where it significantly contributes to as much as 

90 percent of traffic crashes, significant energy use, and emissions. Understanding driver 

decisions is the key to implementing transportation improvement strategies. Also, the potential to 

improving safety and energy use through automation and connectivity of the transportation 

system is enormous. Rapid technological developments, ranging from vehicle-to-vehicle and 

vehicle-to-infrastructure communications, WI-FI, to continuous video and radar surveillance, 

have enabled collection of countless terabytes of spatiotemporal data about vehicle and human 

movement. Thus, in an attempt to prospect opportunities for engineering intelligent and proactive 

transportation systems, the dissertation focused on assembling and utilizing a new 

comprehensive multidimensional transportation database by combining connected vehicles data, 

naturalistic driving sensor and telematics data, and traditional transportation data. 

 

Conceptually, the dissertation revolves around the key concept of “driving volatility” which 

describes the extent of variations in real-world microscopic driving decisions. The key idea was 

to understand (and where possible reduce) “driving volatility” in instantaneous driving decisions 

and increase driving and locational stability. The key motivation behind analyzing driving 
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volatility was to help predict what drivers will do in the short term, and which has significant 

implications for safety, mobility, and energy use.  

 

Consequently, the dissertation developed a new concept of “driving volatility matrix” which 

takes a systems approach to operationalizing driving volatility at different levels. In particular, 

through an integrated research program, the focus was to conceptualize and model the extent of 

variations in real-world driving at several hierarchies of the real-world traffic ecosystem, i.e., 1) 

trip-based volatility, 2) location-based volatility, 3) event-based volatility, and 4) driver-based 

volatility, thus termed as driving volatility matrix. The concept of driving volatility matrix 

provides a systems framework for characterizing the health of three fundamental elements of a 

transportation system: health of driver, environment, and the vehicle. 

 

To conceptualize volatility at a trip-level, a study was conducted to gain a fundamental 

understanding of instantaneous driving decisions, needed for hazard anticipation and notification 

systems, and distinguishing normal from anomalous driving. In particular, driving task was 

divided into distinct yet unobserved regimes. Thus, the research issue was to characterize and 

quantify these regimes in typical driving cycles and the associated volatility of each regime, 

explore when the regimes change and the key correlates associated with each regime. To answer 

these questions, emerging Basic Safety Message (BSM) data from the Safety Pilot Model 

Deployment in Ann Arbor, Michigan, were used to develop two- and three-regime Dynamic 

Markov switching models for several trips undertaken on various roadway types. The results 

indicated that acceleration and deceleration are two distinct regimes, and as compared to 

acceleration, drivers decelerate at higher rates, and braking is significantly more volatile than 
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acceleration. Owing to the important links between microscopic driving decisions and 

surrounding traffic states, differential correlations of the two regimes with instantaneous driving 

contexts were quantified. Furthermore, to reflect the reality and complexity of real-world 

transportation systems, a more generic three-regime model specification was formulated. The 

results revealed high-rate acceleration, high-rate deceleration, and cruise/constant as the three 

distinct regimes that characterize a typical driving cycle. Moreover, given in a high-rate regime, 

drivers’ on-average tended to decelerate at a higher rate than their rate of acceleration. 

Importantly, compared to cruise/constant regime, drivers’ instantaneous driving decisions were 

more volatile both in “high-rate” acceleration as well as “high-rate” deceleration regime. The 

study contributed to analyzing volatility in short-term driving decisions, and how changes in 

driving regimes can be mapped to a combination of local traffic states surrounding the vehicle. 

The new results obtained from this study have important implications. First, the study presented 

an appropriate analytical framework that can help in understanding instantaneous driving 

decisions and key correlates. Driving decisions primarily depend on surrounding traffic states. 

An in-depth analysis of such factors is important for understanding driver specific behavior and 

for developing customized driver based safety applications. For instance, researchers and 

practitioners can implement the proposed methodology to connected vehicle data generated by 

specific driver for several trips. For a specific driver, quantification of the associations between 

instantaneous driving decisions and driving contexts can help us understand driver-specific 

instantaneous volatility, and to develop hazard anticipation and notification systems if a driver is 

observed to deviate from his/her normal driving patterns. Furthermore, given a specific driver 

and keeping in view his/her historical instantaneous driving decisions with respect to local traffic 
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states, alerts and warnings can be provided well in advance to driver specifically if he/she is 

decelerating. 

 

Continuing over the analysis of microscopic driving behaviors in connected vehicles 

environment, another two studies were conducted to extend the concept of “trip-based volatility” 

to specific locations, thus termed as “location-based volatility.” As a proactive safety measure 

and a leading indicator of safety, location-based volatility (LBV) quantifies variability in 

instantaneous driving decisions at intersections. LBV represents the driving performance of 

connected vehicle drivers traveling through a specific intersection. By using big data generated 

by connected and automated vehicles, the key goal was to identify roadway locations (such as 

intersections) where crashes have not yet happened but perhaps are waiting to happen. 

Traditionally, evaluation of intersection safety has been largely reactive, based on historical 

crash frequency data. However, the emerging data from CAVs can complement historical data 

and help in proactively identify intersections which have high levels of variability in 

instantaneous driving behaviors prior to the occurrence of crashes. Based on data from Safety 

Pilot Model Deployment in Ann Arbor, Michigan, the second study developed a unique database 

that integrated intersection crash and inventory data with more than 65 million real-world Basic 

Safety Messages logged by 3,000 connected vehicles, providing a more complete picture of 

operations and safety performance of intersections. As such, by using coefficient of variation of 

acceleration/deceleration as a standardized measure of relative dispersion, LBVs are calculated 

for 116 intersections in Ann Arbor. To quantify relationships between intersection-specific 

volatilities and crash frequencies, rigorous heterogeneity-based count data models were 

estimated. While controlling for exposure related and other unobserved factors, the results 
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provide evidence of statistically significant (5% level) positive association between intersection-

specific volatility and crash frequencies for signalized intersections.  

 

Real-world driving decisions and performance is a complex task and as such it seems natural and 

imperative to explore other (vehicle kinematics based and statistical based) measures of 

capturing driving volatility in large-scale connected vehicles data. Along the lines of the new 

concept of location-based volatility, a third study was conducted to extend the data analytic 

framework for quantification of location-based volatility. From a conceptual stand-point, speed, 

acceleration/deceleration, and vehicular jerk based volatility measures were used. In particular, 

eight different volatility indices were introduced based on coefficient of variation, time-series 

volatility, dynamic speed varying thresholds, and mean absolute deviance based measures. The 

big data analytic methodology accounted for volatilities at trip level nested within location 

(intersection) level in a hierarchical fashion. To implement the methodology, more than 230 

million real-world Basic Safety Messages by connected vehicles were analyzed for a total of 116 

intersections, i.e., a total of 4832.2 hours of driving data were analyzed where an average of 

28376.8 vehicle passings per intersection occurred. As a proof-of-concept, descriptive analysis 

was performed to spot differences between driving volatility at signalized and un-signalized 

intersections.  Then, in-depth statistical analysis is conducted separately for all intersections 

(signalized and un-signalized) and signalized intersections only. Importantly, not all factors that 

may influence crash frequency can be observed in the data. If unobserved factors could be 

included in a model, then correlations between driving volatility and crash frequency can change, 

e.g., the relationship can become statistically insignificant. Given the important methodological 

concerns of unobserved heterogeneity and potential omitted variable bias, hierarchical fixed- and 
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random-parameter Poisson and Poisson log-normal models were developed. Full Bayesian 

estimation via Markov Chain Monte Carlo (MCMC) based Gibbs sampling is performed, 

providing more efficient results. For all intersections, after controlling for traffic exposure, 

geometrics, and unobserved factors, a one-percent increase in intersection-level volatility 

calculated through two standard deviations threshold for acceleration/deceleration, passing level 

volatility captured through coefficient of variation of speed, and mean absolute deviance of 

vehicular jerk results in a 1.25%, 0.25%, and 0.35% increase in crash frequencies respectively. 

However, the relationships between intersection-specific volatility and crash frequencies are 

different for signalized intersections. Several of the exogenous factors are found to be normally 

distributed random parameters, suggesting that the effects of such variables vary across different 

intersections. Overall, the new results from the two “location-based volatility” related studies 

have important real-world safety implications. For many intersections, it is found that observed 

crash frequency is lower but perhaps crashes are waiting to happen as instantaneous driving 

decisions are consistently more volatile at such intersections. For proactive intersection safety 

management, such information is crucial as it can highlight intersection locations where 

behaviors of drivers may differ, compared to their behaviors at other intersection locations. Thus, 

safety managers may consider proactive countermeasures at such locations, e.g., providing 

proactive alerts and warnings to drivers through connected vehicle roadside equipment (RSE). 

 

The sequence of instantaneous driving decisions and its variations prior to involvement in safety 

critical events can be a leading indicator of safety. Thus, another study was conducted to extend 

the concept of driving volatility to specific normal and safety-critical events, thus named “event-

based volatility.” In particular, the research issue included characterization of volatility in 
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instantaneous driving decisions in longitudinal and lateral directions, and how it varies across 

drivers involved in normal driving, crash, and/or near-crash events. Using a unique real-world 

naturalistic driving database from the 2nd Strategic Highway Research Program (SHRP), a test 

set of 9,593 driving events featuring 2.2 million temporal samples of real-world driving were 

analyzed. By using information related to longitudinal and lateral accelerations and vehicular 

jerk, 24 different aggregate and segmented measures of driving volatility were proposed that 

captures variations in extreme instantaneous driving decisions. In doing so, careful attention was 

given to the issue of intentional vs. unintentional volatility. The volatility indices are then linked 

with safety critical events, crash propensity, and other event specific explanatory variables. 

Owing to the presence of unobserved heterogeneity and omitted variable bias, fixed- and 

random-parameter discrete choice models are developed that relate crash propensity to driving 

volatility and other factors. Importantly, statistically significant evidence was found that driver 

volatilities in near-crash and crash events are significantly greater than volatility in normal 

driving events. After controlling for traffic, roadway, and unobserved factors, the results suggest 

that greater intentional volatility increases the likelihood of both crash and near-crash events. 

Importantly, intentional volatility in longitudinal negative jerk (braking) has more negative 

consequences than intentional volatility in positive vehicular jerk. The study also found that 

compared to acceleration/deceleration, vehicular jerk can better characterize the volatility in 

microscopic instantaneous driving decisions prior to involvement in safety critical events. 

Finally, the magnitudes of correlations exhibit significant heterogeneity, and that accounting for 

the heterogeneous effects in the modeling framework can provide more reliable and accurate 

results. The study demonstrated the value of quasi-experimental study design and big data 

analytics for understanding extreme driving behaviors in safe vs. unsafe driving outcomes. 
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While the variations of microscopic driving decisions can influence crash risk (or crash 

propensity), it can also influence the injury outcomes given a crash. Thus, a fifth study was 

conducted for characterizing volatility in instantaneous driving decisions in longitudinal and 

lateral direction and to seek an understanding of how driving volatility relates to crash severity. 

As driving volatility prior to crash involvement can have different components, an in-depth 

analysis is conducted using the aggregate as well as segmented (based on time to collision) real-

world driving data. To account for the issues of observed and unobserved heterogeneity, fixed 

and random parameter ordered models with heterogeneity in parameter means were estimated. 

The empirical results offered important insights regarding how driving volatility in time to 

collision may be related to crash severity outcomes. Overall, statistically significant positive 

correlations are found between the aggregate (as well as segmented) volatility measures and 

crash severity outcomes. The findings suggest that greater driving volatility (both in longitudinal 

and lateral direction) prior to crash occurrence increases the likelihood of police reportable or 

severe crash events. Importantly, compared to the effect of volatility in longitudinal acceleration 

on crash outcomes, the effect of volatility in longitudinal deceleration is significantly greater in 

magnitude. Methodologically, the random parameter models with heterogeneity-in-means 

significantly outperformed both the fixed parameter and random parameter counterparts; 

underscoring the importance of accounting for both observed and unobserved heterogeneity. The 

above event-based volatility related findings have important implications for proactive safety. 

For instance, instantaneous driving decisions can be monitored in real-time and warnings and 

alerts can be issued to drivers in case driver’s decisions in longitudinal and lateral directions 

exhibit greater volatility (especially well ahead of the crash). Given that instantaneous driving 
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decisions during deceleration are more volatile and that the effect of volatility in deceleration on 

crash outcome is more severe, such alerts and warnings can potentially help in improving safety.  

 

Overall, by studying driving volatility from different lenses, the dissertation contributed to the 

scientific analysis of real-world connected vehicles data, and to generate actionable knowledge 

relevant to the design of smart and intelligent transportation systems. Gaining a better 

understanding of microscopic driving decisions and the variations therein in real-world 

environments is fundamental to the design of personalized and intelligent driver feedback 

systems. By altering volatility in real-world microscopic driving decisions, vehicle kinematics, 

and roadway environment, the outcomes help improve transportation safety by proactively 

predicting crash occurrence and its severity given a crash.  

 

7.1 IMPLICATIONS OF DRIVING VOLATILITY MATRIX FOR AUTOMATION IN A 

MIXED AND NON-MIXED TRAFFIC STATE 

 

Note that the concept of “driving volatility matrix” presented in this dissertation is 

operationalized at a level 0 or level 1-2 automation. That is, keeping in view the existing 

transportation landscape, the driving volatility matrix provides full consideration to the fact that 

human driver is in control of the vehicle (level 0-2). Thus, a natural extension of the present 

work would be to explore the implications of driving volatility matrix for higher levels of 

automation. For instance, how will the driving volatility matrix evolve and how relevant it will 

be in a mixed traffic comprising connected and automated vehicles (CAVs) as well as 

conventional vehicles. As technology evolves, before getting to full automation, we will go 
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through a mixed traffic with conventional (human-driven) as well as automated vehicles.  At a 

next level, the relevant question becomes how relevant driving volatility matrix will be in a 

completely non-mixed traffic of automated vehicles, including no conventional vehicles. To shed 

light on these questions, Figure 7.1 provides a general taxonomy of the relevance/value of 

driving volatility matrix as level of vehicle autonomy increases in a transportation network. 

Figure 7.1 also shows the expected relevance of driving volatility matrix in a mixed 

(combination of automated and conventional vehicles) as well as non-mixed (either automated 

vehicles only or conventional vehicles only) traffic system (Figure 7.1). In particular, moving 

across to the right in Figure 7.1 indicates the time horizon. For example, for a mixed traffic state, 

and at specific point in the time horizon (such as Level 2 automation), the mixed traffic state 

would include predominantly Level 2 automated vehicles as well as level 0 and 1 automation. In 

total, in a mixed traffic system, at any specific point in the time horizon, the predominant share 

of vehicles will be the corresponding level of automation and presence of small proportion of 

other vehicles corresponding to levels of automation below the reference level of automation.  
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Figure 7.1 General taxonomy of relevance/value of driving volatility matrix as a function of level 

of vehicle autonomy in a transportation network 

(Notes: Level 0 automation  no automation, Level 1  driver assistance, Level 2  partial 

automation, Level 3  conditional automation, Level 4  high automation, Level 5  full 

automation. Mixed traffic indicates presence of both automated as well as conventional vehicles 

in traffic stream; Non-mixed traffic indicates presence of either automated vehicles only or 

conventional vehicles only in the traffic stream.)  

 

Keeping in view the existing landscape of transportation systems, i.e., level 0 or level 1 

automation (mixed traffic or non-mixed traffic), the concept of driving volatility matrix is of 

very high relevance as the human driver is in control of the vehicle operations (Figure 7.1). 

Moving to level 2 automation in a mixed traffic, the concept of driving volatility is still expected 

to be of “very high” value as the mixed traffic would also include vehicles with level 0 or level 1 

automation (Figure 7.1). If the traffic system comprises of entirely level 2 automated vehicles 

(non-mixed traffic), the relevance of driving volatility would be high as driver is still in control 

in level 2 automation (Figure 7.1). Likewise, at levels of autonomy where the machine is in 
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control (i.e., level 3) in a mixed traffic state, driving volatility will still be of high relevance as 

the system would also comprise of vehicles where human is in control (see Figure 7.1) 

 

As we move further in the time horizon where the level of vehicle autonomy increases in a 

mixed traffic state (such as level 4 and level 5 automation), the relevance of driver related 

elements in the volatility matrix will likely be reduced. However, specific elements of the driving 

volatility matrix will still be relevant (Figure 7.1). For example, in a mixed traffic comprising of 

Level 4 or 5 automated vehicles and conventional vehicles, the driving volatility will still be 

relevant for the conventional vehicles. Importantly, the volatility information of conventional 

vehicles can be shared with CAVs in order for CAVs to anticipate what a human-driven vehicle 

may do in short term, or for CAVs to behave in a more human manner. In this case, the volatility 

in surrounding traffic states (such as level of crowdedness, number of objects (presumably 

conventional vehicles) surrounding the CAV, and distances to the nearest objects) can be 

quantified in real-time and such information can be shared with the CAVs in which case the 

maneuvers and decisions by the highly automated vehicles will be well-informed in a highly 

volatile traffic environment. This is important because even if automated vehicles are doing 

everything they are supposed to do (presumably correct actions), the drivers of surrounding 

vehicles are still naturally error-prone humans, and errors of whom can lead to crashes involving 

automated vehicles. Keeping in view the greater uncertainty over the performance of a mixed 

CAV-conventional traffic system, the information generated by driving volatility matrix can be 

of significant value even at higher levels of automation in mixed traffic (Figure 7.1). 
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Finally, certain components of the driving volatility matrix will also be relevant to the CAVs in a 

non-mixed traffic, such as level 4 or level 5 automated vehicles running in a completely non-

mixed traffic (such as fully dedicated lanes). For instance, while the CAV itself will be machine 

driven, the vehicle condition and/or state of environment (and the volatility therein) can majorly 

influence the operation of CAVs. Along these lines, there will still be a need to characterize 

volatility in environmental factors such as weather, rain, road terrain, and geometric features (to 

name a few), and all of which can affect the performance of CAVs. From a safety outcome 

perspective, another important concern would be how much volatility may exist in our forecasts 

of occurrence of unsafe outcomes, as a leading fully automated vehicle getting into a crash can 

affect the following vehicles as well. Finally, from an automated vehicle condition standpoint, 

characterization of variations and volatility in the probability of a sensor failure (as one example) 

can also be important and relevant. In conclusion, at highest level of automation in a non-mixed 

traffic state, and which would be the ultimate frontier of the current revolution of CAVs, the 

concept of driving volatility would still be of relevance primarily by helping us characterizing 

the volatility and variations in the environmental or external (to the automated vehicles) factors 

that can influence the performance of CAVs in significant ways.  
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